In this paper, a new seven-parameter Mittag-Leffler function of a single com-plex variable is proposed as a generalization of the standard Mittag-Leffler function, certain generalizations of Mittag-Leffler function, hypergeometric function and confluent hypergeometric function. Certain essential analytic properties are mainly discussed, such as radius of convergence, order, type, differentiation, Mellin-Barnes integral representation and Euler transform in the complex plane. Its relation to Fox-Wright function and H-function is also developed.
New speaker identification test’s feature, extracted from the differentiated form of the wave file, is presented. Differentiation operation is performed by an operator similar to the Laplacian operator. From the differentiated record’s, two parametric measures have been extracted and used as identifiers for the speaker; i.e. mean-value and number of zero-crossing points.
In this paper, we introduce three robust fuzzy estimators of a location parameter based on Buckley’s approach, in the presence of outliers. These estimates were compared using the variance of fuzzy numbers criterion, all these estimates were best of Buckley’s estimate. of these, the fuzzy median was the best in the case of small and medium sample size, and in large sample size, the fuzzy trimmed mean was the best.
One of the most important methodologies in operations research (OR) is the linear programming problem (LPP). Many real-world problems can be turned into linear programming models (LPM), making this model an essential tool for today's financial, hotel, and industrial applications, among others. Fuzzy linear programming (FLP) issues are important in fuzzy modeling because they can express uncertainty in the real world. There are several ways to tackle fuzzy linear programming problems now available. An efficient method for FLP has been proposed in this research to find the best answer. This method is simple in structure and is based on crisp linear programming. To solve the fuzzy linear programming problem (FLPP), a new ranking function (R
... Show MoreThis study aims to classify the critical points of functions with 4 variables and 8 parameters, we found the caustic for the certain function with the spreading of the critical points. Finally, as an application, we found the bifurcation solutions for the equation of sixth order with boundary conditions using the Lyapunov-Schmidt method in the variational case.
In this paper, the process for finding an approximate solution of nonlinear three-dimensional (3D) Volterra type integral operator equation (N3D-VIOE) in R3 is introduced. The modelling of the majorant function (MF) with the modified Newton method (MNM) is employed to convert N3D-VIOE to the linear 3D Volterra type integral operator equation (L3D-VIOE). The method of trapezoidal rule (TR) and collocation points are utilized to determine the approximate solution of L3D-VIOE by dealing with the linear form of the algebraic system. The existence of the approximate solution and its uniqueness are proved, and illustrative examples are provided to show the accuracy and efficiency of the model.
Mathematical Subject Classificat
... Show MoreIn these notes, our goal is to give some results on criterion for complex analytic map-germs by their tangent spaces with respect to -equivalence where is the module of complex analytic vector fields on .In addition, we give some results about -trivial analytic family, the direct product and direct sum of map-germs.
In the present paper, by making use of the new generalized operator, some results of third order differential subordination and differential superordination consequence for analytic functions are obtained. Also, some sandwich-type theorems are presented.
The main objective of this thesis is to study new concepts (up to our knowledge) which are P-rational submodules, P-polyform and fully polyform modules. We studied a special type of rational submodule, called the P-rational submodule. A submodule N of an R-module M is called P-rational (Simply, N≤_prM), if N is pure and Hom_R (M/N,E(M))=0 where E(M) is the injective hull of M. Many properties of the P-rational submodules were investigated, and various characteristics were given and discussed that are analogous to the results which are known in the concept of the rational submodule. We used a P-rational submodule to define a P-polyform module which is contained properly in the polyform module. An R-module M is called P-polyform if every es
... Show MoreThe research undertaken has provided a comprehensive insight into the practice of cupping therapy, a traditional treatment modality that has seen resurgence in. modern complementary medicine. This exploration, focusing on a spectrum of. Conditions such as migraines, lower back pain, neck pain, knee osteoarthritis, and chronic urticaria, highlights the potential benefits and the necessity for a deeper. Scientific understanding of cupping therapy. Cupping therapy, with its roots deeply embedded in ancient medical practices, offers a unique approach to treatment by promoting healing through increased blood flow and the release of toxins from the body. The application of this therapy in treating migraines has shown promising results, su
... Show MoreThe research undertaken has provided a comprehensive insight into the practice of cupping therapy, a traditional treatment modality that has seen resurgence in. modern complementary medicine. This exploration, focusing on a spectrum of. Conditions such as migraines, lower back pain, neck pain, knee osteoarthritis, and chronic urticaria, highlights the potential benefits and the necessity for a deeper. Scientific understanding of cupping therapy. Cupping therapy, with its roots deeply embedded in ancient medical practices, offers a unique approach to treatment by promoting healing through increased blood flow and the release of toxins from the body. The application of this therapy in treating migraines has shown promising results, su
... Show More