It is recognized that organisms live and interact in groups, exposing them to various elements like disease, fear, hunting cooperation, and others. As a result, in this paper, we adopted the construction of a mathematical model that describes the interaction of the prey with the predator when there is an infectious disease, as well as the predator community's characteristic of cooperation in hunting, which generates great fear in the prey community. Furthermore, the presence of an incubation period for the disease provides a delay in disease transmission from diseased predators to healthy predators. This research aims to examine the proposed mathematical model's solution behavior to better understand these elements' impact on an eco-epidemic system. For all time, all solutions were proven to exist, be positive, and be uniformly bounded. The existence conditions of possible equilibrium points were determined. The stability analysis was performed for all conceivable equilibria in the presence and absence of delay. When the feedback time delays reach a critical point, the existence of Hopf bifurcation is examined. The normal form theory and the Centre manifold theorem are commonly used to investigate the dynamic properties of bifurcating cyclic solutions arising from Hopf bifurcations. Some numerical simulations were presented to validate the theoretical conclusions and understand the impact of changing the parameter values.
The aim of this work is to study a modified version of the four-dimensional Lotka-Volterra model. In this model, all of the four species grow logistically. This model has at most sixteen possible equilibrium points. Five of them always exist without any restriction on the parameters of the model, while the existence of the other points is subject to the fulfillment of some necessary and sufficient conditions. Eight of the points of equilibrium are unstable and the rest are locally asymptotically stable under certain conditions, In addition, a basin of attraction found for each point that can be asymptotically locally stable. Conditions are provided to ensure that all solutions are bounded. Finally, numerical simulations are given to veri
... Show MoreThis paper deals with two preys and stage-structured predator model with anti-predator behavior. Sufficient conditions that ensure the appearance of local and Hopf bifurcation of the system have been achieved, and it’s observed that near the free predator, the free second prey and the free first prey equilibrium points there are transcritical or pitchfork and no saddle node. While near the coexistence equilibrium point there is transcritical, pitchfork and saddle node bifurcation. For the Hopf bifurcation near the coexistence equilibrium point have been studied. Further, numerical analysis has been used to validate the main results.
In this paper, the conditions of persistence of a mathematical model, consists from
a predator interacting with stage structured prey are established. The occurrence of
local bifurcation and Hopf bifurcation are investigated. Finally, in order to confirm
our obtained analytical results, numerical simulations have been done for a
hypothetical set of parameter values .
A modified Leslie-Gower predator-prey model with a Beddington-DeAngelis functional response is proposed and studied. The purpose is to examine the effects of fear and quadratic fixed effort harvesting on the system's dynamic behavior. The model's qualitative properties, such as local equilibria stability, permanence, and global stability, are examined. The analysis of local bifurcation has been studied. It is discovered that the system experiences a saddle-node bifurcation at the survival equilibrium point whereas a transcritical bifurcation occurs at the boundary equilibrium point. Additionally established are the prerequisites for Hopf bifurcation existence. Finally, using MATLAB, a numerical investigation is conducted to verify the va
... Show MoreA modified Leslie-Gower predator-prey model with a Beddington-DeAngelis functional response is proposed and studied. The purpose is to examine the effects of fear and quadratic fixed effort harvesting on the system's dynamic behavior. The model's qualitative properties, such as local equilibria stability, permanence, and global stability, are examined. The analysis of local bifurcation has been studied. It is discovered that the system experiences a saddle-node bifurcation at the survival equilibrium point whereas a transcritical bifurcation occurs at the boundary equilibrium point. Additionally established are the prerequisites for Hopf bifurcation existence. Finally, using MATLAB, a numerical investigation is conducted to verify t
... Show MoreIn this paper, the interplay among four population species is offered. The system consists of two competitive prey, predator and super predators. The application of the hypothesis of the Sotomayor theorem for local bifurcation around every equilibrium point is adopted. It is detected that the transcritical bifurcation could occur near most of the system's equilibrium points, while saddle-node and pitchfork bifurcation can not be accrued at any of them. Further, the conditions that guarantee the accruing Hopf bifurcation are carried out. Finally, some numerical analysis is illustrated to confirm the analytical results.
It is well known that the spread of cancer or tumor growth increases in polluted environments. In this paper, the dynamic behavior of the cancer model in the polluted environment is studied taking into consideration the delay in clearance of the environment from their contamination. The set of differential equations that simulates this epidemic model is formulated. The existence, uniqueness, and the bound of the solution are discussed. The local and global stability conditions of disease-free and endemic equilibrium points are investigated. The occurrence of the Hopf bifurcation around the endemic equilibrium point is proved. The stability and direction of the periodic dynamics are studied. Finally, the paper is ended with a numerical simul
... Show More
The Framework Convention on Tobacco Control is among the main agreements that dealt with the topic of tobacco control. In spite of the efforts made in this aspect by countries through the preparation and the speed of ratification, there are some obstacles that prevent the achievement of the objectives of the convention including the tobacco companies' pursuit of not implementing the agreement in the necessary manner. In light of this, many countries and international organizations, foremost of which is the World Health Organization, have undertaken to overcome these obstacles. Among the efforts are those which are made in the framework of exchanging information, technical and spec
... Show MoreIn this work we reported the synchronization delay in
semiconductor laser (SL) networks. The unidirectional
configurations between successive oscillators and the correlation
between them are achieved. The coupling strength is a control
parameter so when we increase coupling strength the dynamic of the
system has been change. In addition the time required to synchronize
network components (delay of synchronization) has been studied as
well. The synchronization delay has been increased by mean of
increasing the number of oscillators. Finally, explanation of the time
required to synchronize oscillators in the network at different
coupling strengths.