It is recognized that organisms live and interact in groups, exposing them to various elements like disease, fear, hunting cooperation, and others. As a result, in this paper, we adopted the construction of a mathematical model that describes the interaction of the prey with the predator when there is an infectious disease, as well as the predator community's characteristic of cooperation in hunting, which generates great fear in the prey community. Furthermore, the presence of an incubation period for the disease provides a delay in disease transmission from diseased predators to healthy predators. This research aims to examine the proposed mathematical model's solution behavior to better understand these elements' impact on an eco-epidemic system. For all time, all solutions were proven to exist, be positive, and be uniformly bounded. The existence conditions of possible equilibrium points were determined. The stability analysis was performed for all conceivable equilibria in the presence and absence of delay. When the feedback time delays reach a critical point, the existence of Hopf bifurcation is examined. The normal form theory and the Centre manifold theorem are commonly used to investigate the dynamic properties of bifurcating cyclic solutions arising from Hopf bifurcations. Some numerical simulations were presented to validate the theoretical conclusions and understand the impact of changing the parameter values.
This study has contributed to understanding a delayed prey-predator system involving cannibalism. The system is assumed to use the Holling type II functional response to describe the consuming process and incorporates the predator’s refuge against the cannibalism process. The characteristics of the solution are discussed. All potential equilibrium points have been identified. All equilibrium points’ local stability analyses for all time delay values are investigated. The system exhibits a Hopf bifurcation at the coexistence equilibrium, which is further demonstrated. The center manifold and normal form theorems for functional differential equations are then used to establish the direction of Hopf bifurcation and the stability of the per
... Show MoreAn essential tool for studying the web is its ability to show how energy moves through an ecosystem. Understanding and elucidating the relationship between species variety and their placement within the inclusive trophic dynamics is also beneficial. A food web ecological model with prey and two rival predators under fear and wind flow conditions is developed in this article. The boundedness and positivity of the system’s solution are established mathematically. The stability and existence constraints of the system’s equilibria are examined. The proposed system’s persistence limitations are established. Additionally, the bifurcation analysis of every potential equilibrium is examined using the Sotomayor theorem. To describe the
... Show MoreThe cheif aim of the present investigation is to develop Leslie Gower type three species food chain model with prey refuge. The intra-specific competition among the predators is considered in the proposed model. Besides the logistic growth rate for the prey species, Sokol Howell functional response for predation is chosen for our model formulation. The behaviour of the model system thoroughly analyses near the biologically significant equilibria. The linear stability analysis of the equilibria is carried out in order to examine the response of the system. The present model system experiences Hopf bifurcation depending on the choice of suitable model parameters. Extensive numerical simulation reveals the validity of the proposed model.
Understanding the effects of fear, quadratic fixed effort harvesting, and predator-dependent refuge are essential topics in ecology. Accordingly, a modified Leslie–Gower prey–predator model incorporating these biological factors is mathematically modeled using the Beddington–DeAngelis type of functional response to describe the predation processes. The model’s qualitative features are investigated, including local equilibria stability, permanence, and global stability. Bifurcation analysis is carried out on the temporal model to identify local bifurcations such as transcritical, saddle-node, and Hopf bifurcation. A comprehensive numerical inquiry is carried out using MATLAB to verify the obtained theoretical findings and und
... Show MoreIn the current paper, the effect of fear in three species Beddington–DeAngelis food chain model is investigated. A three species food chain model incorporating Beddington-DeAngelis functional response is proposed, where the growth rate in the first and second level decreases due to existence of predator in the upper level. The existence, uniqueness and boundedness of the solution of the model are studied. All the possible equilibrium points are determined. The local as well as global stability of the system are investigated. The persistence conditions of the system are established. The local bifurcation analysis of the system is carried out. Finally, numerical simulations are used t
This paper deals with two preys and stage-structured predator model with anti-predator behavior. Sufficient conditions that ensure the appearance of local and Hopf bifurcation of the system have been achieved, and it’s observed that near the free predator, the free second prey and the free first prey equilibrium points there are transcritical or pitchfork and no saddle node. While near the coexistence equilibrium point there is transcritical, pitchfork and saddle node bifurcation. For the Hopf bifurcation near the coexistence equilibrium point have been studied. Further, numerical analysis has been used to validate the main results.
A modified Leslie-Gower predator-prey model with a Beddington-DeAngelis functional response is proposed and studied. The purpose is to examine the effects of fear and quadratic fixed effort harvesting on the system's dynamic behavior. The model's qualitative properties, such as local equilibria stability, permanence, and global stability, are examined. The analysis of local bifurcation has been studied. It is discovered that the system experiences a saddle-node bifurcation at the survival equilibrium point whereas a transcritical bifurcation occurs at the boundary equilibrium point. Additionally established are the prerequisites for Hopf bifurcation existence. Finally, using MATLAB, a numerical investigation is conducted to verify the va
... Show MoreA modified Leslie-Gower predator-prey model with a Beddington-DeAngelis functional response is proposed and studied. The purpose is to examine the effects of fear and quadratic fixed effort harvesting on the system's dynamic behavior. The model's qualitative properties, such as local equilibria stability, permanence, and global stability, are examined. The analysis of local bifurcation has been studied. It is discovered that the system experiences a saddle-node bifurcation at the survival equilibrium point whereas a transcritical bifurcation occurs at the boundary equilibrium point. Additionally established are the prerequisites for Hopf bifurcation existence. Finally, using MATLAB, a numerical investigation is conducted to verify t
... Show More