The main problem established by a discovery of a thyroid nodule is to discriminate between a benign and malignant lesion. Differential diagnosis between follicular thyroid cancer (FTC) and benign follicular thyroid adenoma (FTA) is a great challenge for even an experienced pathologist and requires special effort. A developing number of some encouraging IHC markers for the differential diagnosis of thyroid lesions have emerged, including, Hector Battifora mesothelial (HBME-1) and galectin-3 (Gal-3). There was significant positive correlation between Galectin-3 and HBME-1 in follicular carcinoma and follicular variant of papillary carcinoma (r= 0.380, P= 0.041) and (r= 0.315, P=0.047) respectively. There was no significant correlation between Galectin-3 and HBME-1 in follicular adenoma and follicular hyperplasia. Immunohistochemical expression of Galectin-3(Gal-3) there was highly significant difference (P<0.001) among study groups (FC, FVPC, FA, follicular hyperplasia) while there was no significant difference in mean of immunohistochemical score of Galectin-3 between follicular carcinoma, follicular variant of and papillary carcinoma (P>0.05); however, carcinoma of both types showed significantly higher Galectin-3 score than both follicular adenoma and follicular hyperplasia (P<0.001). In addition, the score of follicular adenoma was significantly greater than that of follicular hyperplasia (P<0.05). Immunohistochemical expression of HBME-1 immunohistochemical expression of HBME-1was highly significance among study groups (FC, FVPC, FA, follicular hyperplasia) while there was no significant difference in mean score between follicular carcinoma and follicular variant of papillary carcinoma (P>0.05); however, carcinoma of both types showed significantly higher HBME-1 score than both follicular adenoma and follicular hyperplasia (P<0.001). In addition, the score of follicular adenoma was significantly greater than that of follicular hyperplasia (P<0.05).Keywords: Galatin-3, HBME-1, Thyroid.
Many approaches of different complexity already exist to edge detection in
color images. Nevertheless, the question remains of how different are the results
when employing computational costly techniques instead of simple ones. This
paper presents a comparative study on two approaches to color edge detection to
reduce noise in image. The approaches are based on the Sobel operator and the
Laplace operator. Furthermore, an efficient algorithm for implementing the two
operators is presented. The operators have been applied to real images. The results
are presented in this paper. It is shown that the quality of the results increases by
using second derivative operator (Laplace operator). And noise reduced in a good
Lost circulation or losses in drilling fluid is one of the most important problems in the oil and gas industry, and it appeared at the beginning of this industry, which caused many problems during the drilling process, which may lead to closing the well and stopping the drilling process. The drilling muds are relatively expensive, especially the muds that contain oil-based mud or that contain special additives, so it is not economically beneficial to waste and lose these muds. The treatment of drilling fluid losses is also somewhat expensive as a result of the wasted time that it caused, as well as the high cost of materials used in the treatment such as heavy materials, cement, and others. The best way to deal with drilling fluid losses
... Show MoreBrain tissues segmentation is usually concerned with the delineation of three types of brain matters Grey Matter (GM), White Matter (WM) and Cerebrospinal Fluid (CSF). Because most brain structures are anatomically defined by boundaries of these tissue classes, accurate segmentation of brain tissues into one of these categories is an important step in quantitative morphological study of the brain. As well as the abnormalities regions like tumors are needed to be delineated. The extra-cortical voxels in MR brain images are often removed in order to facilitate accurate analysis of cortical structures. Brain extraction is necessary to avoid the misclassifications of surrounding tissues, skull and scalp as WM, GM or tumor when implementing s
... Show MoreThe brain's magnetic resonance imaging (MRI) is tasked with finding the pixels or voxels that establish where the brain is in a medical image The Convolutional Neural Network (CNN) can process curved baselines that frequently occur in scanned documents. Next, the lines are separated into characters. In the Convolutional Neural Network (CNN) can process curved baselines that frequently occur in scanned documents case of fonts with a fixed MRI width, the gaps are analyzed and split. Otherwise, a limited region above the baseline is analyzed, separated, and classified. The words with the lowest recognition score are split into further characters x until the result improves. If this does not improve the recognition s
... Show MoreSome of the main challenges in developing an effective network-based intrusion detection system (IDS) include analyzing large network traffic volumes and realizing the decision boundaries between normal and abnormal behaviors. Deploying feature selection together with efficient classifiers in the detection system can overcome these problems. Feature selection finds the most relevant features, thus reduces the dimensionality and complexity to analyze the network traffic. Moreover, using the most relevant features to build the predictive model, reduces the complexity of the developed model, thus reducing the building classifier model time and consequently improves the detection performance. In this study, two different sets of select
... Show MoreWith the proliferation of both Internet access and data traffic, recent breaches have brought into sharp focus the need for Network Intrusion Detection Systems (NIDS) to protect networks from more complex cyberattacks. To differentiate between normal network processes and possible attacks, Intrusion Detection Systems (IDS) often employ pattern recognition and data mining techniques. Network and host system intrusions, assaults, and policy violations can be automatically detected and classified by an Intrusion Detection System (IDS). Using Python Scikit-Learn the results of this study show that Machine Learning (ML) techniques like Decision Tree (DT), Naïve Bayes (NB), and K-Nearest Neighbor (KNN) can enhance the effectiveness of an Intrusi
... Show MoreThe leaves of globe artichoke, Cynara scolymus Family Asteraceae/ compositea have long – used in traditional medicine and now included in British and European Pharmacopeia, the British Harbal Pharmacopeia and complete German Commission E monographs.The plant originally comes from Mediterranean region and North Africa and cultivated around the world. The flowers are used worldwide for nutrition purposes and the leaves for medical purposes including hepatic affections. The plant wildly distributed in Iraq in the watery lines and boundary of the field.The plant contains many phytochemicals such as the bitter phenolic acids whose choleretic and hypocholestremic as these compounds are antioxidant. Other materials to h
... Show MoreConvolutional Neural Networks (CNN) have high performance in the fields of object recognition and classification. The strength of CNNs comes from the fact that they are able to extract information from raw-pixel content and learn features automatically. Feature extraction and classification algorithms can be either hand-crafted or Deep Learning (DL) based. DL detection approaches can be either two stages (region proposal approaches) detector or a single stage (non-region proposal approach) detector. Region proposal-based techniques include R-CNN, Fast RCNN, and Faster RCNN. Non-region proposal-based techniques include Single Shot Detector (SSD) and You Only Look Once (YOLO). We are going to compare the speed and accuracy of Faster RCNN,
... Show MoreBackground: Prostatic adenocarcinoma is the most widely recognized malignancy in men and the second cause of cancer-related mortality encountered in male patients after lung cancer.
Aim of the study: To assess the diagnostic value of diffusion weighted imaging (DWI) and its quantitative measurement, apparent diffusion coefficient (ADC), in the identification and localization of prostatic cancer compared with T2 weighted image sequence (T2WI).
Type of the study: a prospective analytic study
Patients and methods: forty-one male patients with suspected prostatic cancer were examined by pelvic MRI at the MRI department of the Oncology Teaching Hospital/Medical City in Baghdad
... Show MoreMany carbonate reservoirs in the world show a tilted in originally oil-water contact (OOWC) which requires a special consideration in the selection of the capillary pressure curves and an understanding of reservoir fluids distribution while initializing the reservoir simulation models.
An analytical model for predicting the capillary pressure across the interface that separates two immiscible fluids was derived from reservoir pressure transient analysis. The model reflected the entire interaction between the reservoir-aquifer fluids and rock properties measured under downhole reservoir conditions.
This model retained the natural coupling of oil reservoirs with the aquifer zone and treated them as an explicit-region composite system