The main problem established by a discovery of a thyroid nodule is to discriminate between a benign and malignant lesion. Differential diagnosis between follicular thyroid cancer (FTC) and benign follicular thyroid adenoma (FTA) is a great challenge for even an experienced pathologist and requires special effort. A developing number of some encouraging IHC markers for the differential diagnosis of thyroid lesions have emerged, including, Hector Battifora mesothelial (HBME-1) and galectin-3 (Gal-3). There was significant positive correlation between Galectin-3 and HBME-1 in follicular carcinoma and follicular variant of papillary carcinoma (r= 0.380, P= 0.041) and (r= 0.315, P=0.047) respectively. There was no significant correlation between Galectin-3 and HBME-1 in follicular adenoma and follicular hyperplasia. Immunohistochemical expression of Galectin-3(Gal-3) there was highly significant difference (P<0.001) among study groups (FC, FVPC, FA, follicular hyperplasia) while there was no significant difference in mean of immunohistochemical score of Galectin-3 between follicular carcinoma, follicular variant of and papillary carcinoma (P>0.05); however, carcinoma of both types showed significantly higher Galectin-3 score than both follicular adenoma and follicular hyperplasia (P<0.001). In addition, the score of follicular adenoma was significantly greater than that of follicular hyperplasia (P<0.05). Immunohistochemical expression of HBME-1 immunohistochemical expression of HBME-1was highly significance among study groups (FC, FVPC, FA, follicular hyperplasia) while there was no significant difference in mean score between follicular carcinoma and follicular variant of papillary carcinoma (P>0.05); however, carcinoma of both types showed significantly higher HBME-1 score than both follicular adenoma and follicular hyperplasia (P<0.001). In addition, the score of follicular adenoma was significantly greater than that of follicular hyperplasia (P<0.05).Keywords: Galatin-3, HBME-1, Thyroid.
Visceral leishmaniasis (VL) or kala-azar is one of the worlds most neglected tropical diseases in mortality and fourth in morbidity, rK39 dipstick was used to diagnose the suspected infected patients as cheapest simple technique which can differentiate recent from chronic infection, for disease out-coming, naïve T-lymphocyte cells should be differentiated into pathogen-specific immunity responses, such as T-helper 1(Th-1) or (Th-2). HLA-G is a special protein defined as nonclassical HLA class I molecule can suppress the immune system through prevention of T-cell function by foul all T-cell mechanisms. So, this study aimed to detect and evaluate the level of sHLA-G in the sera of patients infected with VL. The results showed that there was
... Show MoreLeishmaniasis is a global illness that is endemic in many countries, including Iraq. The characteristic of cutaneous leishmaniasis (CL) is the development of skin ulcers that are controlled by the immune system. Tumor necrosis factor-alpha (TNF-α), a cytokine generated by the innate immune response to CL infection, can influence disease clearance in the human host. The effect of this pro-inflammatory cytokine in CL ulcer development during the infection is not well established. In this study TNF-α level was detected in the patients who suffered from cutaneous leishmaniasis. This level was also assessed in the newly diagnosed patients and others who were undergoing different stages of pentostam treatment. Notably the result
... Show MorePseudomonas aeruginosa is an opportunistic pathogen. Quorum sensing (QS) is one of processes that are responsible for biofilm formation. P. aeruginosa can live in different environments, some of which are pathogenic (clinical isolates) and some that are found outside the body (environmental isolates). The present study aimed to determine the presence of a number of genes responsible for QS in clinical and environmental isolates of P. aeruginosa. In the present study full DNA was separated from all environmental and clinical isolates that contained seven genes (rhlA, rhlR, rhlI, lasR, lasI, lasB, phzA1) associated with QS occurrence. The tot
... Show MoreAn Auto Crop method is used for detection and extraction signature, logo and stamp from the document image. This method improves the performance of security system based on signature, logo and stamp images as well as it is extracted images from the original document image and keeping the content information of cropped images. An Auto Crop method reduces the time cost associated with document contents recognition. This method consists of preprocessing, feature extraction and classification. The HSL color space is used to extract color features from cropped image. The k-Nearest Neighbors (KNN) classifier is used for classification.
The aim of the present study was to distinguish between healthy children and those with epilepsy by electroencephalography (EEG). Two biomarkers including Hurst exponents (H) and Tsallis entropy (TE) were used to investigate the background activity of EEG of 10 healthy children and 10 with epilepsy. EEG artifacts were removed using Savitzky-Golay (SG) filter. As it hypothesize, there was a significant changes in irregularity and complexity in epileptic EEG in comparison with healthy control subjects using t-test (p< 0.05). The increasing in complexity changes were observed in H and TE results of epileptic subjects make them suggested EEG biomarker associated with epilepsy and a reliable tool for detection and identification of this di
... Show MoreWith the growth of the use mobile phones, people have become increasingly interested in using Short Message Services (SMS) as the most suitable communications service. The popularity of SMS has also given rise to SMS spam, which refers to any unwanted message sent to a mobile phone as a text. Spam may cause many problems, such as traffic bottlenecks or stealing important users' information. This paper, presents a new model that extracts seven features from each message before applying a Multiple Linear Regression (MLR) to assign a weight to each of the extracted features. The message features are fed into the Extreme Learning Machine (ELM) to determine whether they are spam or ham. To evaluate the proposed model, the UCI bench
... Show MoreThe recent emergence of sophisticated Large Language Models (LLMs) such as GPT-4, Bard, and Bing has revolutionized the domain of scientific inquiry, particularly in the realm of large pre-trained vision-language models. This pivotal transformation is driving new frontiers in various fields, including image processing and digital media verification. In the heart of this evolution, our research focuses on the rapidly growing area of image authenticity verification, a field gaining immense relevance in the digital era. The study is specifically geared towards addressing the emerging challenge of distinguishing between authentic images and deep fakes – a task that has become critically important in a world increasingly reliant on digital med
... Show MoreWith the rapid development of computers and network technologies, the security of information in the internet becomes compromise and many threats may affect the integrity of such information. Many researches are focused theirs works on providing solution to this threat. Machine learning and data mining are widely used in anomaly-detection schemes to decide whether or not a malicious activity is taking place on a network. In this paper a hierarchical classification for anomaly based intrusion detection system is proposed. Two levels of features selection and classification are used. In the first level, the global feature vector for detection the basic attacks (DoS, U2R, R2L and Probe) is selected. In the second level, four local feature vect
... Show MoreData mining has the most important role in healthcare for discovering hidden relationships in big datasets, especially in breast cancer diagnostics, which is the most popular cause of death in the world. In this paper two algorithms are applied that are decision tree and K-Nearest Neighbour for diagnosing Breast Cancer Grad in order to reduce its risk on patients. In decision tree with feature selection, the Gini index gives an accuracy of %87.83, while with entropy, the feature selection gives an accuracy of %86.77. In both cases, Age appeared as the most effective parameter, particularly when Age<49.5. Whereas Ki67 appeared as a second effective parameter. Furthermore, K- Nearest Neighbor is based on the minimum err
... Show MoreData mining has the most important role in healthcare for discovering hidden relationships in big datasets, especially in breast cancer diagnostics, which is the most popular cause of death in the world. In this paper two algorithms are applied that are decision tree and K-Nearest Neighbour for diagnosing Breast Cancer Grad in order to reduce its risk on patients. In decision tree with feature selection, the Gini index gives an accuracy of %87.83, while with entropy, the feature selection gives an accuracy of %86.77. In both cases, Age appeared as the most effective parameter, particularly when Age<49.5. Whereas Ki67 appeared as a second effective parameter. Furthermore, K- Nearest Neighbor is based on the minimu
... Show More