Let A be a unital algebra, a Banach algebra module M is strongly fully stable Banach A-module relative to ideal K of A, if for every submodule N of M and for each multiplier θ : N → M such that θ(N) ⊆ N ∩ KM. In this paper, we adopt the concept of strongly fully stable Banach Algebra modules relative to an ideal which generalizes that of fully stable Banach Algebra modules and we study the properties and characterizations of strongly fully stable Banach A-module relative to ideal K of A.
Based on the density functional theory (DFT) , the stability of molecular complexes has been predicted according to hard-soft acid base (HSAB) theory. Relative stability of products and reactivity of soft base sulfide derivatives with halogens (Iodine , Bromine , Chlorine) as soft acid was studied to determine the relative ability of these reactants causing the reaction to be more spontaneous.
DFT at the levels of B3LYP/3-21G and B3LYP/3-21G (d) was used to study HOMO LUMO energy gaps , bonds length and total energy to calculate the softness sequence of each type of acid or base mentioned in this work. All cases studied prove that iodine can be considered as the most softness acid and ethyl methyl sulfide≈ dimethyl sulfide the most
A non-zero module M is called hollow, if every proper submodule of M is small. In this work we introduce a generalization of this type of modules; we call it prime hollow modules. Some main properties of this kind of modules are investigated and the relation between these modules with hollow modules and some other modules are studied, such as semihollow, amply supplemented and lifting modules.
Let R be a commutative ring with unity. In this paper we introduce the notion of chained fuzzy modules as a generalization of chained modules. We investigate several characterizations and properties of this concept
In this paper, we introduce the notion of a 2-prime module as a generalization of prime module E over a ring R, where E is said to be prime module if (0) is a prime submodule. We introduced the concept of the 2-prime R-module. Module E is said to be 2-prime if (0) is 2-prime submodule of E. where a proper submodule K of module E is 2-prime submodule if, whenever rR, xE, E, Thus xK or [K: E].
This paper aims to introduce the concepts of -closed, -coclosed, and -extending modules as generalizations of the closed, coclossed, and extending modules, respectively. We will prove some properties as when the image of the e*-closed submodule is also e*-closed and when the submodule of the e*-extending module is e*-extending. Under isomorphism, the e*-extending modules are closed. We will study the quotient of e*-closed and e*-extending, the direct sum of e*-closed, and the direct sum of e*-extending.
Let R be a commutative ring with identity, and let M be a unitary left R-module. M is called special selfgenerator or weak multiplication module if for each cyclic submodule Ra of M (equivalently, for each submodule N of M) there exists a family {fi} of endomorphism of M such that Ra = ∑_i▒f_i (M) (equivalently N = ∑_i▒f_i (M)). In this paper we introduce a class of modules properly contained in selfgenerator modules called special selfgenerator modules, and we study some of properties of these modules.