Free boundary problems with nonlinear diffusion occur in various applications, such as solidification over a mould with dissimilar nonlinear thermal properties and saturated or unsaturated absorption in the soil beneath a pond. In this article, we consider a novel inverse problem where a free boundary is determined from the mass/energy specification in a well-posed one-dimensional nonlinear diffusion problem, and a stability estimate is established. The problem is recast as a nonlinear least-squares minimisation problem, which is solved numerically using the
A novel encapsulated deep eutectic solvent (DES) was introduced for biodiesel production via a two-step process. The DES was encapsulated in medical capsules and were used to reduce the free fatty acid (FFA) content of acidic crude palm oil (ACPO) to the minimum acceptable level (< 1%). The DES was synthesized from methyltriphenylphosphonium bromide (MTPB) and p-toluenesulfonic acid (PTSA). The effects pertaining to different operating conditions such as capsule dosage, reaction time, molar ratio, and reaction temperature were optimized. The FFA content of ACPO was reduced from existing 9.61% to less than 1% under optimum operating conditions. This indicated that encapsulated MTPB-DES performed high catalytic activity in FFA esterificatio
... Show MoreThis paper presents an application of a Higher Order Shear Deformation Theory (HOST 12) to problem
of free vibration of simply supported symmetric and antisymmetric angle-ply composite laminated plates.
The theoretical model HOST12 presented incorporates laminate deformations which account for the effects
of transverse shear deformation, transverse normal strain/stress and a nonlinear variation of in-plane
displacements with respect to the thickness coordinate – thus modeling the warping of transverse crosssections more accurately and eliminating the need for shear correction coefficients. Solutions are obtained in
closed-form using Navier’s technique by solving the eigenvalue equation. Plates with varying number of
Free water surface constructed wetlands (FSCWs) can be used to complement conventional waste water treatment but removal efficiencies are often limited by a high ratio of water volume to biofilm surface area (i.e. high water depth). Floating treatment wetlands (FTWs) consist of floating matrices which can enhance the surface area available for the development of fixed microbial biofilms and provide a platform for plant growth (which can remove pollutants by uptake). In this study the potential of FTWs for ammoniacal nitrogen (AN) removal was evaluated using experimental mesocosms operated under steady-state flow conditions with ten different treatments (two water depths, two levels of FTW mat coverage, two different plant densities and
... Show MoreAn experimental and numerical study was carried out to investigate the heat transfer by natural convection in a three dimensional annulus enclosure filled with porous media (silica sand) between two inclined concentric cylinders with (and without) annular fins attached to the inner cylinder under steady state condition. The experiments were carried out for a range of modified Rayleigh number (0.2 ≤Ra*≤ 11) and extended to Ra*=500 for numerical study and for annulus inclination angle of (δ = 0˚, 30˚, 60˚ and 90˚). The numerical study was to give the governing equation under assumptions that used Darcy law and Boussinesq’s approximation and then it was solved numerically using finite difference approximation. It was found that t
... Show MoreNanoceria have shown numerous unique characteristics, such as biocompatibility and are excellent agents for biological applications. The aim of this study is to investigate cerium oxide nanoparticles for 2, 2- diphenyl-1-picryl-hydrazyl-hydrate (DPPH) free radical scavenging activity and their ability to offer protection against ionizing radiation. In vitro antioxidant activity study of nanoceria particles has shown good free radical scavenging activity for DPPH radical assayed within a concentration range of 0.01 to 0.05 g/l, at higher concentrations of nanoparticles showed reverse trend in absorbance and inhibition indicating this finite rang of concentration is suitable for scavenging free radicals, also nanoparticles were found to ha
... Show MoreIn this paper, a new procedure is introduced to estimate the solution for the three-point boundary value problem which is instituted on the use of Morgan-Voyce polynomial. In the beginning, Morgan-Voyce polynomial along with their important properties is introduced. Next, this polynomial with aid of the collocation method utilized to modify the differential equation with boundary conditions to the algebraic system. Finally, the examples approve the validity and accuracy of the proposed method.
Buckling analysis of a laminated composite thin plate with different boundary conditions subjected to in-plane uniform load are studied depending on classical laminated plate theory; analytically using (Rayleigh-Ritz method). Equation of motion of the plates was derived using the principle of virtual work and solved using modified Fourier displacement function that satisfies general edge conditions. The eigenvalue problem generated by using Ritz method, the set of linear algebraic equations can be solved using MATLAB for symmetric and anti-symmetric, cross and angle-ply laminated plate considering some design parameters such as aspect ratios, number of layers, lamination type and orthotropic ratio. The results obtained g
... Show MoreIn this work, we prove that the triple linear partial differential equations (PDEs) of elliptic type (TLEPDEs) with a given classical continuous boundary control vector (CCBCVr) has a unique "state" solution vector (SSV) by utilizing the Galerkin's method (GME). Also, we prove the existence of a classical continuous boundary optimal control vector (CCBOCVr) ruled by the TLEPDEs. We study the existence solution for the triple adjoint equations (TAJEs) related with the triple state equations (TSEs). The Fréchet derivative (FDe) for the objective function is derived. At the end we prove the necessary "conditions" theorem (NCTh) for optimality for the problem.
The researcher [1-10] proposed a method for computing the numerical solution to quasi-linear parabolic p.d.e.s using a Chebyshev method. The purpose of this paper is to extend the method to problems with mixed boundary conditions. An error analysis for the linear problem is given and a global element Chebyshev method is described. A comparison of various chebyshev methods is made by applying them to two-point eigenproblems. It is shown by analysis and numerical examples that the approach used to derive the generalized Chebyshev method is comparable, in terms of the accuracy obtained, with existing Chebyshev methods.