Free boundary problems with nonlinear diffusion occur in various applications, such as solidification over a mould with dissimilar nonlinear thermal properties and saturated or unsaturated absorption in the soil beneath a pond. In this article, we consider a novel inverse problem where a free boundary is determined from the mass/energy specification in a well-posed one-dimensional nonlinear diffusion problem, and a stability estimate is established. The problem is recast as a nonlinear least-squares minimisation problem, which is solved numerically using the
Oxygen therapy (OT) is considered an essential process for
survival for the i nfants with bronchiolitis > However, it may reach the status of being harmful when using it for along beriod . We , here, attempted to shed a light on relations between oxygen therapy duration(OTD) and each of serum malondialdehyde (MDA) that is used as index for free radical generation , and serum albumin level , in infants with bronchiolitis . Our results confirmed that (OTD) from (1-48) hr. was non effective, while from 49 was very effective where a grave in crease in serum (MDA)level and a decrease in serum albumin concentration were observed during that time . The relation between age a
... Show MoreNonlinear diffraction patterns can be obtained by focusing a laser beam through a thin slice of the material. Here, we investigated experimentally the formation of the far field nonlinear diffraction patterns of cw laser beam at 532 nm passing through a quartz cuvette containing multi-wall carbon nanotubes (MWCNT's) suspended in acetone and in DI water at concentrations of 0.030.wt.%, 0.045 wt.%, 0.060 wt.%, and 0.075 wt.%. Our results show that increasing the concentration of both types of suspensions (MWCNTs in acetone and MWCNTs DI water) led to increase in the number of pattern rings which indicates an increase in their nonlinear refractive indices. Moreover, MWCNTs DI water suspension at a concentration of 0.075 wt. % was more effic
... Show MoreWe consider some nonlinear partial differential equations in higher dimensions, the negative order of the Calogero-Bogoyavelnskii-Schiff (nCBS) equationin (2+1) dimensions, the combined of the Calogero-Bogoyavelnskii-Schiff equation and the negative order of the Calogero-Bogoyavelnskii-Schiff equation (CBS-nCBS) in (2+1) dimensions, and two models of the negative order Korteweg de Vries (nKdV) equations in (3+1) dimensions. We show that these equations can be reduced to the same class of ordinary differential equations via wave reduction variable. Solutions in terms of symmetrical Fibonacci and Lucas functions are presented by implementation of the modified Kudryashov method.
The aim of this paper is to present a method for solving high order ordinary differential equations with two point's boundary condition, we propose semi-analytic technique using two-point oscillatory interpolation to construct polynomial solution. The original problem is concerned using two-point oscillatory interpolation with the fit equal numbers of derivatives at the end points of an interval [0 , 1] . Also, many examples are presented to demonstrate the applicability, accuracy and efficiency of the method by comparing with conventional methods.
In this study, the modified Rayleigh-Ritz method and Fourier series are used to determine the thermal buckling behavior of laminated composite thin plates with a general elastic boundary condition applied to in-plane uniform temperature distribution depending upon classical laminated plate theory(CLPT). A generalized procedure solution is developed for the Rayleigh-Ritz method combined with the synthetic spring technique. The transverse displacement of the orthotropic rectangular plates is not a different term as a new shape expansion of trigonometric series. In this solution approach, the plate transverse deflection and rotation due to bending are developed into principle Fourier series with a sufficient smoothness auxi
... Show MoreIn this paper we shall generalize fifth explicit Runge-Kutta Feldberg(ERKF(5)) and Continuous explicit Runge-Kutta (CERK) method using shooting method to solve second order boundary value problem which can be reduced to order one.These methods we shall call them as shooting Continuous Explicit Runge-Kutta method, the results are computed using matlab program.