Preferred Language
Articles
/
6RZiZ4cBVTCNdQwCiUny
Free Boundary Determination in Nonlinear Diffusion
...Show More Authors
Abstract<p>Free boundary problems with nonlinear diffusion occur in various applications, such as solidification over a mould with dissimilar nonlinear thermal properties and saturated or unsaturated absorption in the soil beneath a pond. In this article, we consider a novel inverse problem where a free boundary is determined from the mass/energy specification in a well-posed one-dimensional nonlinear diffusion problem, and a stability estimate is established. The problem is recast as a nonlinear least-squares minimisation problem, which is solved numerically using the <italic>lsqnonlin</italic> routine from the MATLAB toolbox. Accurate and stable numerical solutions are achieved. For noisy data, instability is manifest in the derivative of the moving free surface, but not in the free surface itself nor in the concentration or temperature.</p>
Scopus Clarivate Crossref
View Publication
Publication Date
Fri Jan 01 2016
Journal Name
Applied Numerical Mathematics
Multiple time-dependent coefficient identification thermal problems with a free boundary
...Show More Authors

View Publication
Scopus (27)
Crossref (18)
Scopus Clarivate Crossref
Publication Date
Wed Sep 01 2021
Journal Name
Baghdad Science Journal
An Efficient Image Encryption Using a Dynamic, Nonlinear and Secret Diffusion Scheme
...Show More Authors

The growing use of tele

This paper presents a new secret diffusion scheme called Round Key Permutation (RKP) based on the nonlinear, dynamic and pseudorandom permutation for encrypting images by block, since images are considered particular data because of their size and their information, which are two-dimensional nature and characterized by high redundancy and strong correlation. Firstly, the permutation table is calculated according to the master key and sub-keys. Secondly, scrambling pixels for each block to be encrypted will be done according the permutation table. Thereafter the AES encryption algorithm is used in the proposed cryptosystem by replacing the linear permutation of ShiftRows step with the nonlinear and secret pe

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Tue Apr 20 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Galerkin-Implicit Methods for Solving Nonlinear Hyperbolic Boundary Value Problem
...Show More Authors

This paper is concerned with finding the approximation solution (APPS) of a certain type of nonlinear hyperbolic boundary value problem (NOLHYBVP).  The given BVP is written in its discrete (DI) weak form (WEF), and is proved that  it has a unique APPS, which is obtained via the mixed Galerkin finite element method (GFE) with implicit method (MGFEIM) that reduces the problem to solve the Galerkin nonlinear algebraic system  (GNAS).  In this part, the predictor and the corrector technique (PT and CT) are proved convergent and are used to transform the obtained GNAS to  linear (GLAS ), then the GLAS is solved using the Cholesky method (ChMe). The stability and the convergence of the method are studied. The results

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Dec 18 2019
Journal Name
Baghdad Science Journal
The Continuous Classical Boundary Optimal Control of Couple Nonlinear Hyperbolic Boundary Value Problem with Equality and Inequality Constraints
...Show More Authors

The paper is concerned with the state and proof of the existence theorem of a unique solution (state vector) of couple nonlinear hyperbolic equations (CNLHEQS) via the Galerkin method (GM) with the Aubin theorem. When the continuous classical boundary control vector (CCBCV) is known, the theorem of existence a CCBOCV with equality and inequality state vector constraints (EIESVC) is stated and proved, the existence theorem of a unique solution of the adjoint couple equations (ADCEQS) associated with the state equations is studied. The Frcéhet derivative derivation of the "Hamiltonian" is obtained. Finally the necessary theorem (necessary conditions "NCs") and the sufficient theorem (sufficient conditions" SCs") for optimality of the stat

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Fri Mar 31 2017
Journal Name
Journal Of Engineering
Free Vibration Analysis of Laminated Composite plates with General Elastic Boundary Supports
...Show More Authors

In this investigation, Rayleigh–Ritz method is used to calculate the natural frequencies of rectangular isotropic and laminated symmetric and anti-symmetric cross and angle ply composite plate with general elastic supports along its edges. Each of the admissible functions here is composed of a trigonometric function and an arbitrary continuous function that is introduced to ensure the sufficient smoothness of the so-called residual displacement function at the edges. Perhaps more importantly, this study has developed a general approach for deriving a complete set of admissible functions that can be applied to various boundary conditions. Several numerical examples are studied to demonstrate the accuracy and convergence of the current s

... Show More
View Publication Preview PDF
Publication Date
Mon Oct 01 2012
Journal Name
Computers &amp; Mathematics With Applications
Boundary element formulations for the numerical solution of two-dimensional diffusion problems with variable coefficients
...Show More Authors

View Publication
Crossref (19)
Crossref
Publication Date
Tue Aug 01 2023
Journal Name
Baghdad Science Journal
The Classical Continuous Optimal Control for Quaternary Nonlinear Parabolic Boundary Value Problems
...Show More Authors

In this paper, our purpose is to study the classical continuous optimal control (CCOC)  for quaternary nonlinear parabolic boundary value problems (QNLPBVPs). The existence and uniqueness theorem (EUTh) for the quaternary state vector solution (QSVS) of the weak form (WF) for the QNLPBVPs with a given quaternary classical continuous control vector (QCCCV) is stated and proved via the Galerkin Method (GM) and the first compactness theorem under suitable assumptions(ASSUMS). Furthermore, the continuity operator for the existence theorem of a QCCCV dominated by the QNLPBVPs is stated and proved under suitable conditions.

View Publication Preview PDF
Scopus Crossref
Publication Date
Fri Apr 21 2023
Journal Name
Aip Conference Proceedings
Efficient computational methods for solving the nonlinear initial and boundary value problems
...Show More Authors

In this paper, three approximate methods namely the Bernoulli, the Bernstein, and the shifted Legendre polynomials operational matrices are presented to solve two important nonlinear ordinary differential equations that appeared in engineering and applied science. The Riccati and the Darcy-Brinkman-Forchheimer moment equations are solved and the approximate solutions are obtained. The methods are summarized by converting the nonlinear differential equations into a nonlinear system of algebraic equations that is solved using Mathematica®12. The efficiency of these methods was investigated by calculating the root mean square error (RMS) and the maximum error remainder (𝑀𝐸𝑅n) and it was found that the accuracy increases with increasi

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Mon Jul 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
The Continuous Classical Optimal Control Problems for Triple Nonlinear Elliptic Boundary Value Problem
...Show More Authors

     In this research, our aim is to study the optimal control problem (OCP) for triple nonlinear elliptic boundary value problem (TNLEBVP). The Mint-Browder theorem is used to prove the existence and uniqueness theorem of the solution of the state vector for fixed control vector. The existence theorem for the triple continuous classical optimal control vector (TCCOCV) related to the TNLEBVP is also proved. After studying the existence of a unique solution for the triple adjoint equations (TAEqs) related to the triple of the state equations, we derive The Fréchet derivative (FD) of the cost function using Hamiltonian function. Then the theorems of necessity conditions and the sufficient condition for optimality of

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Nov 30 2021
Journal Name
Iraqi Journal Of Science
The Galerkin-Implicit Method for Solving Nonlinear Variable Coefficients Hyperbolic Boundary Value Problem
...Show More Authors

This paper has the interest of finding the approximate solution (APPS) of a nonlinear variable coefficients hyperbolic boundary value problem (NOLVCHBVP).  The given boundary value problem is written in its discrete weak form (WEFM) and proved  have a unique solution, which is obtained via the mixed Galerkin finite element with implicit method that reduces the problem to solve the Galerkin nonlinear algebraic system  (GNAS). In this part, the predictor and the corrector techniques (PT and CT, respectively) are proved at first convergence and then are used to transform  the obtained GNAS to a linear GLAS . Then the GLAS is solved using the Cholesky method (ChMe). The stability and the convergence of the method are stud

... Show More
View Publication Preview PDF
Scopus (3)
Scopus Crossref