The need to create the optimal water quality management process has motivated researchers to pursue prediction modeling development. One of the widely important forecasting models is the sessional autoregressive integrated moving average (SARIMA) model. In the present study, a SARIMA model was developed in R software to fit a time series data of monthly fluoride content collected from six stations on Tigris River for the period from 2004 to 2014. The adequate SARIMA model that has the least Akaike's information criterion (AIC) and mean squared error (MSE) was found to be SARIMA (2,0,0) (0,1,1). The model parameters were identified and diagnosed to derive the forecasting equations at each selected location. The correlation coefficient between the actual and predicted values for fluoride concentration at the six locations, Al-Karakh, East Tigris, Al-Wathbah, AL-Karamah, Al-Rashid and Al-Wahda WTP intakes, was 0.93, 0.82, 0.86, 0.90, 0.83 and 0.89, respectively. Model verification results indicated that the model forecasting outputs rationally estimated the actual monthly fluoride content in the selected locations.
The present study is concern with the interaction between the naidid worms diversity and the species of aquatic plant within which the worms found . For this purpose, two species of aquatic plant were used, Ceratophyllum demersum and Eichhornia crassipes. 12 samples of aquatic plants were collected , as one sample monthly for a period from September 2012 to September 2013 from different site on Tigris river within Baghdad City. From C. demersum, 1428 individuals, were sorted during the study period, related to 17 species. 12 species of subfamily Naidinae which are Chaetogaster limnaei , C. diastrophus , Ophidonais serpentine , Dero ( Dero) digitata. , D.(D.) evelinae , Nais pseudobtosa , N.simplex, N.stolci , N.Paradalis , N.elingiu
... Show MoreThe research utilizes data produced by the Local Urban Management Directorate in Najaf and the imagery data from the Landsat 9 satellite, after being processed by the GIS tool. The research follows a descriptive and analytical approach; we integrated the Markov chain analysis and the cellular automation approach to predict transformations in city structure as a result of changes in land utilization. The research also aims to identify approaches to detect post-classification transformations in order to determine changes in land utilization. To predict the future land utilization in the city of Kufa, and to evaluate data accuracy, we used the Kappa Indicator to determine the potential applicability of the probability matrix that resulted from
... Show MoreIn this study, phosphorescence analysis (KPA) is used for determining soil collected from the Tigris River from Al- Karrada and Bab Al-Sharq in Baghdad and samples were taken from rainwater collected from Al-Rashad, Al-Obeidi, Al-Dora and Al-Sadr City in Baghdad. The measurements were carried out by the Iraqi Ministry of Health and Environment, in the Radiation Protection Center. The collection, removal and evaporation of the samples ranged from January to the end of March 2018. The results show the presents of concentration of 238U and 235U in soil samples and the rainwater samples. The conclusion of this work is the concentration of uranium in soil samples is more than recommendations by ICRP value of 1.9 μg /l. While all water sample
... Show MoreIn this research, Artificial Neural Networks (ANNs) technique was applied in an attempt to predict the water levels and some of the water quality parameters at Tigris River in Wasit Government for five different sites. These predictions are useful in the planning, management, evaluation of the water resources in the area. Spatial data along a river system or area at different locations in a catchment area usually have missing measurements, hence an accurate prediction. model to fill these missing values is essential.
The selected sites for water quality data prediction were Sewera, Numania , Kut u/s, Kut d/s, Garaf observation sites. In these five sites models were built for prediction of the water level and water quality parameters.
The present work included qualitative study of epiphytic algae on dead and living stems, leaves of the aquatic plant Phragmitesaustralis Trin ex Stand, in Tigris River in AL- Jadria Site in Baghdad during Autumn 2014, Winter 2015, Spring 2015, and Summer 2015. The physical and chemical parameters of River’s water were studied (water temperature, pH, electric conductivity, Salinity, TSS, TDS, turbidity, light intensity, dissolve oxygen, BOD5, alkalinity, total hardness, calcium, magnesium and plant nutrient). A total of 142 isolates of epiphytic algae were identified. Diatoms were dominant by 117 isolates followed by Cyanobacteria (13isolates), Chlorophyta (11 isolates) and Rhodophyta (1 isolate), Variations in the isolates number were rec
... Show MoreThe present research was performed to study the qualitative and quantitative composition of epiphytic algae on the aquatic host plant Ceratophyllum demersum L. Four sites in Tigris River, at Wassit Governorate were covered, during the seasons of Autumn 2017, winter 2018, Spring 2018, and Summer 2018. The study also included measuring the physiochemical parameters (temperature of air and water, pH , water level, EC, salinity, TDS, TSS, dissolved oxygen, BOD5, alkalinity, total hardness, calcium, magnesium, total nitrogen, total phosphourus). The total number of species of epiphytic algae was145 species, 98 species belonging to Bacillariophyceae, followed by 27species of class Cyanophyceae, 19 species of class Chloroph
... Show MoreThe use of real-time machine learning to optimize passport control procedures at airports can greatly improve both the efficiency and security of the processes. To automate and optimize these procedures, AI algorithms such as character recognition, facial recognition, predictive algorithms and automatic data processing can be implemented. The proposed method is to use the R-CNN object detection model to detect passport objects in real-time images collected by passport control cameras. This paper describes the step-by-step process of the proposed approach, which includes pre-processing, training and testing the R-CNN model, integrating it into the passport control system, and evaluating its accuracy and speed for efficient passenger flow
... Show More. In recent years, Bitcoin has become the most widely used blockchain platform in business and finance. The goal of this work is to find a viable prediction model that incorporates and perhaps improves on a combination of available models. Among the techniques utilized in this paper are exponential smoothing, ARIMA, artificial neural networks (ANNs) models, and prediction combination models. The study's most obvious discovery is that artificial intelligence models improve the results of compound prediction models. The second key discovery was that a strong combination forecasting model that responds to the multiple fluctuations that occur in the bitcoin time series and Error improvement should be used. Based on the results, the prediction a
... Show Moren this paper, we formulate three mathematical models using spline functions, such as linear, quadratic and cubic functions to approximate the mathematical model for incoming water to some dams. We will implement this model on dams of both rivers; dams on the Tigris are Mosul and Amara while dams on the Euphrates are Hadetha and Al-Hindya.
In this paper a decoder of binary BCH code is implemented using a PIC microcontroller for code length n=127 bits with multiple error correction capability, the results are presented for correcting errors up to 13 errors. The Berkelam-Massey decoding algorithm was chosen for its efficiency. The microcontroller PIC18f45k22 was chosen for the implementation and programmed using assembly language to achieve highest performance. This makes the BCH decoder implementable as a low cost module that can be used as a part of larger systems. The performance evaluation is presented in terms of total number of instructions and the bit rate.