This paper presents a fuzzy logic controller for a two-tank level control system, which is a process with a dead time. The fuzzy controller is a proportional-integral (PI-like) fuzzy controller which is suitable for steady state behavior of the system. Transient behavior of the system was improved without the need for a derivative action by suitable change in the rule base of the controller. Simulation results showed the step response of the two-tank level control system when this controller was used to control this plant and the effect of the dead time on the response of the system.
Our goal in the present paper is to recall the concept of general fuzzy normed space and its basic properties in order to define the adjoint operator of a general fuzzy bounded operator from a general fuzzy normed space V into another general fuzzy normed space U. After that basic properties of the adjoint operator were proved then the definition of fuzzy reflexive general fuzzy normed space was introduced in order to prove that every finite dimensional general fuzzy normed space is fuzzy reflexive.
In this paper, variable gain nonlinear PD and PI fuzzy logic controllers are designed and the effect of the variable gain characteristic of these controllers is analyzed to show its contribution in enhancing the performance of the closed loop system over a conventional linear PID controller. Simulation results and time domain performance characteristics show how these fuzzy controllers outperform the conventional PID controller when used to control a nonlinear plant and a plant that has time delay.
In this paper, variable gain nonlinear PD and PI fuzzy logic controllers are designed and the effect of the variable gain characteristic of these controllers is analyzed to show its contribution in enhancing the performance of the closed loop system over a conventional linear PID controller. Simulation results and time domain performance characteristics show how these fuzzy controllers outperform the conventional PID controller when used to control a nonlinear plant and a plant that has time delay.
The analysis of survival and reliability considered of topics and methods of vital statistics at the present time because of their importance in the various demographical, medical, industrial and engineering fields. This research focused generate random data for samples from the probability distribution Generalized Gamma: GG, known as: "Inverse Transformation" Method: ITM, which includes the distribution cycle integration function incomplete Gamma integration making it more difficult classical estimation so will be the need to illustration to the method of numerical approximation and then appreciation of the function of survival function. It was estimated survival function by simulation the way "Monte Carlo". The Entropy method used for the
... Show MoreIn this paper, we will study non parametric model when the response variable have missing data (non response) in observations it under missing mechanisms MCAR, then we suggest Kernel-Based Non-Parametric Single-Imputation instead of missing value and compare it with Nearest Neighbor Imputation by using the simulation about some difference models and with difference cases as the sample size, variance and rate of missing data.
This paper is concerned with pre-test single and double stage shrunken estimators for the mean (?) of normal distribution when a prior estimate (?0) of the actule value (?) is available, using specifying shrinkage weight factors ?(?) as well as pre-test region (R). Expressions for the Bias [B(?)], mean squared error [MSE(?)], Efficiency [EFF(?)] and Expected sample size [E(n/?)] of proposed estimators are derived. Numerical results and conclusions are drawn about selection different constants included in these expressions. Comparisons between suggested estimators, with respect to classical estimators in the sense of Bias and Relative Efficiency, are given. Furthermore, comparisons with the earlier existing works are drawn.
One of the most important and common problems in petroleum engineering; reservoir, and production engineering is coning; either water or gas coning. Almost 75% of the drilled wells worldwide contains this problem, and in Iraq water coning problem is much wider than the gas coning problem thus in this paper we try to clarify most of the reasons causing water coning and some of applicable solutions to avoid it using the simulation program (CMG Builder) to build a single well model considering an Iraqi well in north of Iraq black oil field with a bottom water drive, Coning was decreased by 57% by dividing into sub-layers (8) layers rather than (4) layers, also it was decreased (Coning) by 45% when perforation numbers and positions was chang
... Show MoreIn order to advance the education process and raise the educational level of the players, it became necessary to introduce new educational aids, programmed education in the education process, through which the basic skills to be learned are explained and clarified, and immediate feedback is provided that would enhance the information of the learner, and Reaching the goal to be achieved, taking into account the individual differences between the players, and thus it is possible to move away from the educational methods used in learning skills, which requires great effort and time, in addition to that the open playground may not perform the skill accurately and the player looks from one side, while when using the computer you look from severa
... Show MoreIn this paper the definition of fuzzy normed space is recalled and its basic properties. Then the definition of fuzzy compact operator from fuzzy normed space into another fuzzy normed space is introduced after that the proof of an operator is fuzzy compact if and only if the image of any fuzzy bounded sequence contains a convergent subsequence is given. At this point the basic properties of the vector space FC(V,U)of all fuzzy compact linear operators are investigated such as when U is complete and the sequence ( ) of fuzzy compact operators converges to an operator T then T must be fuzzy compact. Furthermore we see that when T is a fuzzy compact operator and S is a fuzzy bounded operator then the composition TS and ST are fuzzy compact
... Show More