Reliable data transfer and energy efficiency are the essential considerations for network performance in resource-constrained underwater environments. One of the efficient approaches for data routing in underwater wireless sensor networks (UWSNs) is clustering, in which the data packets are transferred from sensor nodes to the cluster head (CH). Data packets are then forwarded to a sink node in a single or multiple hops manners, which can possibly increase energy depletion of the CH as compared to other nodes. While several mechanisms have been proposed for cluster formation and CH selection to ensure efficient delivery of data packets, less attention has been given to massive data communication processes with sink node. As such, failure in communicating nodes would lead to a significant network void-holes problem. Considering the limited energy resources of nodes in UWSNs along with the heavy load of CHs in the routing process, this paper proposes a void-holes aware and reliable data forwarding strategy (VHARD-FS) in a proactive mode to control data packets delivery from CH nodes to the sink in UWSNs. In the proposed strategy, each CH node is aware of its neighbor’s performance ranking index to conduct a reliable packet transmission to the sink via the most energy-efficient route. Extensive simulation results indicate that the VHARD-FS outperforms existing routing approaches while comparing energy efficiency and network throughput. This study helps to effectively alleviate the resource limitations associated with UWSNs by extending network life and increasing service availability even in a harsh underwater environment.
The paper aims to build a model that supports organizational sustainability by analyzing the correlations and revealing the impact between the two main variables (entrepreneurial leadership) with its dimensions of proactive outlook, risk, and creativity (Van Zyl & Mathur-Helm, 2007), and (organizational sustainability) with its economic, environmental, and societal dimensions (Hansmann et al., 2012). As well as identifying the level of awareness and informing managers in the General Company for the Automotive and Equipment Industry, of the theoretical implications and performance, and its vital importance to society and the surrounding ecological environment, and drawing attention to that and improving performance, and indicatin
... Show More— To identify the effect of deep learning strategy on mathematics achievement and practical intelligence among secondary school students during the 2022/2023 academic year. In the research, the experimental research method with two groups (experimental and control) with a post-test were adopted. The research community is represented by the female students of the fifth scientific grade from the first Karkh Education Directorate. (61) female students were intentionally chosen, and they were divided into two groups: an experimental group (30) students who were taught according to the proposed strategy, and a control group (31) students who were taught according to the usual method. For the purpose of collecting data for the experimen
... Show MoreThe paper aims to identify the impact of discrete realization strategy in the development of reflective thinking among students: (males/females) of Qur'an and Islamic education departments for the course of Islamic jurisprudence according to the variability of sex. The researcher used the experimental approach and adopted an experimental determination with a set part of the two groups (experimental and controlled). He selected the sample deliberately which consists of (147) students spread over four classes (experimental males/ experimental females/ controlled males/ controlled females), and it took last for an academic year of (2010-2011). He, then, prepared a post test to measure the reflective thinking with his five skills (skill of o
... Show MoreThe present paper aims at evaluating the vailability quality and future horizons of potable water in the city of Shatra as a model. This is done in accordance with certain subjective and objective factors alongside the classification map of Shatra as a residential area. This system follows geographical studies specialized in urban construction. The problem of the present paper as well as the data approaching that problem have been chosen from the records of 2018. The researcher offered (919) questionnaire forms to be answered by a sample of dwellers in that area. Besides, the researcher also followed lab analysis of water samples collected from districts in the city of Shatra. GIS technology was also used to arrive at the real water shar
... Show MoreThe drill bit is the most essential tool in drilling operation and optimum bit selection is one of the main challenges in planning and designing new wells. Conventional bit selections are mostly based on the historical performance of similar bits from offset wells. In addition, it is done by different techniques based on offset well logs. However, these methods are time consuming and they are not dependent on actual drilling parameters. The main objective of this study is to optimize bit selection in order to achieve maximum rate of penetration (ROP). In this work, a model that predicts the ROP was developed using artificial neural networks (ANNs) based on 19 input parameters. For the
Shear and compressional wave velocities, coupled with other petrophysical data, are vital in determining the dynamic modules magnitude in geomechanical studies and hydrocarbon reservoir characterization. But, due to field practices and high running cost, shear wave velocity may not available in all wells. In this paper, a statistical multivariate regression method is presented to predict the shear wave velocity for Khasib formation - Amara oil fields located in South- East of Iraq using well log compressional wave velocity, neutron porosity and density. The accuracy of the proposed correlation have been compared to other correlations. The results show that, the presented model provides accurate
... Show MoreAutomatic Programming Assessment (APA) has been gaining lots of attention among researchers mainly to support automated grading and marking of students’ programming assignments or exercises systematically. APA is commonly identified as a method that can enhance accuracy, efficiency and consistency as well as providing instant feedback on students’ programming solutions. In achieving APA, test data generation process is very important so as to perform a dynamic testing on students’ assignment. In software testing field, many researches that focus on test data generation have demonstrated the successful of adoption of Meta-Heuristic Search Techniques (MHST) so as to enhance the procedure of deriving adequate test data for efficient t
... Show MoreWithin the framework of big data, energy issues are highly significant. Despite the significance of energy, theoretical studies focusing primarily on the issue of energy within big data analytics in relation to computational intelligent algorithms are scarce. The purpose of this study is to explore the theoretical aspects of energy issues in big data analytics in relation to computational intelligent algorithms since this is critical in exploring the emperica aspects of big data. In this chapter, we present a theoretical study of energy issues related to applications of computational intelligent algorithms in big data analytics. This work highlights that big data analytics using computational intelligent algorithms generates a very high amo
... Show MoreTraumatic spinal cord injury is a serious neurological disorder. Patients experience a plethora of symptoms that can be attributed to the nerve fiber tracts that are compromised. This includes limb weakness, sensory impairment, and truncal instability, as well as a variety of autonomic abnormalities. This article will discuss how machine learning classification can be used to characterize the initial impairment and subsequent recovery of electromyography signals in an non-human primate model of traumatic spinal cord injury. The ultimate objective is to identify potential treatments for traumatic spinal cord injury. This work focuses specifically on finding a suitable classifier that differentiates between two distinct experimental
... Show More