Glaucoma is a visual disorder, which is one of the significant driving reason for visual impairment. Glaucoma leads to frustrate the visual information transmission to the brain. Dissimilar to other eye illness such as myopia and cataracts. The impact of glaucoma can’t be cured; The Disc Damage Likelihood Scale (DDLS) can be used to assess the Glaucoma. The proposed methodology suggested simple method to extract Neuroretinal rim (NRM) region then dividing the region into four sectors after that calculate the width for each sector and select the minimum value to use it in DDLS factor. The feature was fed to the SVM classification algorithm, the DDLS successfully classified Glaucoma disease with 70% percentage; moreover, when the dimensions of both Optic Disc(OD) and Optic Cup(OC) were used as additional features the accuracy rate raised to 91%.
Image recognition is one of the most important applications of information processing, in this paper; a comparison between 3-level techniques based image recognition has been achieved, using discrete wavelet (DWT) and stationary wavelet transforms (SWT), stationary-stationary-stationary (sss), stationary-stationary-wavelet (ssw), stationary-wavelet-stationary (sws), stationary-wavelet-wavelet (sww), wavelet-stationary- stationary (wss), wavelet-stationary-wavelet (wsw), wavelet-wavelet-stationary (wws) and wavelet-wavelet-wavelet (www). A comparison between these techniques has been implemented. according to the peak signal to noise ratio (PSNR), root mean square error (RMSE), compression ratio (CR) and the coding noise e (n) of each third
... Show MoreRecognizing speech emotions is an important subject in pattern recognition. This work is about studying the effect of extracting the minimum possible number of features on the speech emotion recognition (SER) system. In this paper, three experiments performed to reach the best way that gives good accuracy. The first one extracting only three features: zero crossing rate (ZCR), mean, and standard deviation (SD) from emotional speech samples, the second one extracting only the first 12 Mel frequency cepstral coefficient (MFCC) features, and the last experiment applying feature fusion between the mentioned features. In all experiments, the features are classified using five types of classification techniques, which are the Random Forest (RF),
... Show MoreOver the past few years, ear biometrics has attracted a lot of attention. It is a trusted biometric for the identification and recognition of humans due to its consistent shape and rich texture variation. The ear presents an attractive solution since it is visible, ear images are easily captured, and the ear structure remains relatively stable over time. In this paper, a comprehensive review of prior research was conducted to establish the efficacy of utilizing ear features for individual identification through the employment of both manually-crafted features and deep-learning approaches. The objective of this model is to present the accuracy rate of person identification systems based on either manually-crafted features such as D
... Show MoreThe area of character recognition has received a considerable attention by researchers all over the world during the last three decades. However, this research explores best sets of feature extraction techniques and studies the accuracy of well-known classifiers for Arabic numeral using the Statistical styles in two methods and making comparison study between them. First method Linear Discriminant function that is yield results with accuracy as high as 90% of original grouped cases correctly classified. In the second method, we proposed algorithm, The results show the efficiency of the proposed algorithms, where it is found to achieve recognition accuracy of 92.9% and 91.4%. This is providing efficiency more than the first method.
Emotion recognition has important applications in human-computer interaction. Various sources such as facial expressions and speech have been considered for interpreting human emotions. The aim of this paper is to develop an emotion recognition system from facial expressions and speech using a hybrid of machine-learning algorithms in order to enhance the overall performance of human computer communication. For facial emotion recognition, a deep convolutional neural network is used for feature extraction and classification, whereas for speech emotion recognition, the zero-crossing rate, mean, standard deviation and mel frequency cepstral coefficient features are extracted. The extracted features are then fed to a random forest classifier. In
... Show MoreFrictional heat is generated when the clutch starts to engag. As a result of this operation the surface temperature is increased rapidly due to the difference in speed between the driving and driven parts. The influence of the thickness of frictional facing on the distribution of the contact pressure of the multi-disc clutches has been investigated using a numerical approach (the finite element method). The analysis of contact problem has been carried out for a multiple disc dry clutch (piston, clutch discs, separators and pressure plate). The results present the distribution of the contact pressure on all tShe surfaces of friction discs that existed in the friction clutch system. Axisymmetric finite element models have been developed to ac
... Show MoreBackground: Prolapsed intervertebral disc is an important and common cause of low backache. MRI has now become universally accepted investigation for prolapsed intervertebral disc. We, however, regularly come across situations, when MRI shows diffuse disc bulges, even at multiple levels, which cannot be correlated clinically and when such cases are operated, no significant disc prolapse is found resulting in negative exploration.Objective: To evaluate the role of M.R.I. finding not only for diagnosis of disc herniation at lumbar region but also for localization the level of herniationMethods: A prospective study on seventy five symptomatic low backache and MRI confirmed prolapsed intervertebral disc patients at lumbo-sacral region were o
... Show MoreBackground: Prolapsed intervertebral disc is an important and common cause of low backache. MRI has now become universally accepted investigation for prolapsed intervertebral disc. We, however, regularly come across situations, when MRI shows diffuse disc bulges, even at multiple levels, which cannot be correlated clinically and when such cases are operated, no significant disc prolapse is found resulting in negative exploration. Objective: To evaluate the role of M.R.I. finding not only for diagnosis of disc herniation at lumbar region but also for localization the level of herniation Methods: A prospective study on seventy five symptomatic low backache and MRI confirmed prolapsed intervertebral disc patients at lumbo-sacral region were op
... Show MoreBackground: Disc battery ingestion is a common
serious problem in Iraq. It increase in the last years
because of the increase in number of electronic toys
that uses these batteries. These batteries contains
many types of irritant chemicals that increases the
risk of it's ingestion.
Methods:We reviewed the medical records of
children aged between 1year and 7 years
old admitted to Surgical Specialty Hospital/Baghdad
Medical City due to disc battery ingestion from
January 2007 through December 2010). The diagnosis
of disc battery ingestion was based upon history,
clinical symptoms, and results of imaging studies.
The clinical data reviewed included sex, age, clinical
manifestation and duration of sy