Preferred Language
Articles
/
5BeP5I8BVTCNdQwCwn91
Disc damage likelihood scale recognition for Glaucoma detection
Abstract<p>Glaucoma is a visual disorder, which is one of the significant driving reason for visual impairment. Glaucoma leads to frustrate the visual information transmission to the brain. Dissimilar to other eye illness such as myopia and cataracts. The impact of glaucoma can’t be cured; The Disc Damage Likelihood Scale (DDLS) can be used to assess the Glaucoma. The proposed methodology suggested simple method to extract Neuroretinal rim (NRM) region then dividing the region into four sectors after that calculate the width for each sector and select the minimum value to use it in DDLS factor. The feature was fed to the SVM classification algorithm, the DDLS successfully classified Glaucoma disease with 70% percentage; moreover, when the dimensions of both Optic Disc(OD) and Optic Cup(OC) were used as additional features the accuracy rate raised to 91%.</p>
Scopus Crossref
View Publication
Publication Date
Wed Dec 30 2015
Journal Name
College Of Islamic Sciences
Stances on the damage to manuscripts and ways to address them

Humans knew writing and to blog motivated by the need for registration and documentation, and tried from the very beginning of research to find the most suitable material for this purpose, he used many different materials in form, nature, and composition, so it is written on the mud by the ancient Sumerian people in different forms and when the text is long Numbered as the pages of the book at the present time, this research will deal with the damage to manuscripts and then find ways to address them.

View Publication Preview PDF
Publication Date
Thu Dec 01 2022
Journal Name
Journal Of Education For Pure Science- University Of Thi-qar
Dorsal Hand Vein Image Recognition: A Review

Subcutaneous vascularization has become a new solution for identification management over the past few years. Systems based on dorsal hand veins are particularly promising for high-security settings. The dorsal hand vein recognition system comprises the following steps: acquiring images from the database and preprocessing them, locating the region of interest, and extracting and recognizing information from the dorsal hand vein pattern. This paper reviewed several techniques for obtaining the dorsal hand vein area and identifying a person. Therefore, this study just provides a comprehensive review of existing previous theories. This model aims to offer the improvement in the accuracy rate of the system that was shown in previous studies and

... Show More
Publication Date
Sun Sep 24 2023
Journal Name
Journal Of Al-qadisiyah For Computer Science And Mathematics
Human Recognition Using Ear Features: A Review

Over the past few years, ear biometrics has attracted a lot of attention. It is a trusted biometric for the identification and recognition of humans due to its consistent shape and rich texture variation. The ear presents an attractive solution since it is visible, ear images are easily captured, and the ear structure remains relatively stable over time.  In this paper, a comprehensive review of prior research was conducted to establish the efficacy of utilizing ear features for individual identification through the employment of both manually-crafted features and deep-learning approaches. The objective of this model is to present the accuracy rate of person identification systems based on either manually-crafted features such as D

... Show More
Crossref
View Publication
Publication Date
Fri Jul 18 2014
Journal Name
International Journal Of Computer Applications
3-Level Techniques Comparison based Image Recognition

Image recognition is one of the most important applications of information processing, in this paper; a comparison between 3-level techniques based image recognition has been achieved, using discrete wavelet (DWT) and stationary wavelet transforms (SWT), stationary-stationary-stationary (sss), stationary-stationary-wavelet (ssw), stationary-wavelet-stationary (sws), stationary-wavelet-wavelet (sww), wavelet-stationary- stationary (wss), wavelet-stationary-wavelet (wsw), wavelet-wavelet-stationary (wws) and wavelet-wavelet-wavelet (www). A comparison between these techniques has been implemented. according to the peak signal to noise ratio (PSNR), root mean square error (RMSE), compression ratio (CR) and the coding noise e (n) of each third

... Show More
Crossref
View Publication
Publication Date
Sun Mar 06 2011
Journal Name
Baghdad Science Journal
Numeral Recognition Using Statistical Methods Comparison Study

The area of character recognition has received a considerable attention by researchers all over the world during the last three decades. However, this research explores best sets of feature extraction techniques and studies the accuracy of well-known classifiers for Arabic numeral using the Statistical styles in two methods and making comparison study between them. First method Linear Discriminant function that is yield results with accuracy as high as 90% of original grouped cases correctly classified. In the second method, we proposed algorithm, The results show the efficiency of the proposed algorithms, where it is found to achieve recognition accuracy of 92.9% and 91.4%. This is providing efficiency more than the first method.

Crossref
View Publication Preview PDF
Publication Date
Thu Nov 01 2018
Journal Name
2018 1st Annual International Conference On Information And Sciences (aicis)
Speech Emotion Recognition Using Minimum Extracted Features

Recognizing speech emotions is an important subject in pattern recognition. This work is about studying the effect of extracting the minimum possible number of features on the speech emotion recognition (SER) system. In this paper, three experiments performed to reach the best way that gives good accuracy. The first one extracting only three features: zero crossing rate (ZCR), mean, and standard deviation (SD) from emotional speech samples, the second one extracting only the first 12 Mel frequency cepstral coefficient (MFCC) features, and the last experiment applying feature fusion between the mentioned features. In all experiments, the features are classified using five types of classification techniques, which are the Random Forest (RF),

... Show More
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
View Publication Preview PDF
Publication Date
Mon Jun 05 2023
Journal Name
Journal Of Engineering
Isolated Word Speech Recognition Using Mixed Transform

Methods of speech recognition have been the subject of several studies over the past decade. Speech recognition has been one of the most exciting areas of the signal processing. Mixed transform is a useful tool for speech signal processing; it is developed for its abilities of improvement in feature extraction. Speech recognition includes three important stages, preprocessing, feature extraction, and classification. Recognition accuracy is so affected by the features extraction stage; therefore different models of mixed transform for feature extraction were proposed. The properties of the recorded isolated word will be 1-D, which achieve the conversion of each 1-D word into a 2-D form. The second step of the word recognizer requires, the

... Show More
Crossref (1)
Crossref
View Publication Preview PDF
Publication Date
Sun Jan 14 2018
Journal Name
Journal Of Engineering
Optical Character Recognition Using Active Contour Segmentation

Document analysis of images snapped by camera is a growing challenge. These photos are often poor-quality compound images, composed of various objects and text; this makes automatic analysis complicated. OCR is one of the image processing techniques which is used to perform automatic identification of texts. Existing image processing techniques need to manage many parameters in order to clearly recognize the text in such pictures. Segmentation is regarded one of these essential parameters. This paper discusses the accuracy of segmentation process and its effect over the recognition process. According to the proposed method, the images were firstly filtered using the wiener filter then the active contour algorithm could b

... Show More
View Publication Preview PDF
Publication Date
Thu Aug 01 2019
Journal Name
International Journal Of Machine Learning And Computing
Emotion Recognition System Based on Hybrid Techniques

Emotion recognition has important applications in human-computer interaction. Various sources such as facial expressions and speech have been considered for interpreting human emotions. The aim of this paper is to develop an emotion recognition system from facial expressions and speech using a hybrid of machine-learning algorithms in order to enhance the overall performance of human computer communication. For facial emotion recognition, a deep convolutional neural network is used for feature extraction and classification, whereas for speech emotion recognition, the zero-crossing rate, mean, standard deviation and mel frequency cepstral coefficient features are extracted. The extracted features are then fed to a random forest classifier. In

... Show More
Scopus (8)
Crossref (12)
Scopus Crossref
View Publication Preview PDF
Publication Date
Wed Jan 13 2021
Journal Name
Iraqi Journal Of Science
YouTube Keyword Search Engine Using Speech Recognition

Visual media is a better way to deliver the information than the old way of "reading". For that reason with the wide propagation of multimedia websites, there are large video library’s archives, which came to be a main resource for humans. This research puts its eyes on the existing development in applying classical phrase search methods to a linked vocal transcript and after that it retrieves the video, this an easier way to search any visual media. This system has been implemented using JSP and Java language for searching the speech in the videos

Scopus (1)
Scopus Crossref
View Publication Preview PDF