Introduction and Aim: Klebsiella pneumoniae is a Gram-negative bacterium responsible for a wide range of infections, including respiratory tract infections (RTIs). This research was aimed to study the antibacterial and anti-biofilm effect of AgNPs produced by Gram positive and negative bacteria on RTIs associated with K. pneumoniae. Materials and Methods: The biofilm formation of K. pneumoniae was determined by tube method qualitatively from select bacterial species characterized by UV-Visible spectroscopy. The antibacterial susceptibility of the bacteria AgNPs was tested for their antibacterial and antibiofilm activity on a clinical isolate of K. pneumoniae. Results: K. pneumoniae isolated from RTIs were strong biofilm producers. The antibacterial activity of AgNPs synthesized from bacterial spp in this study had good antibacterial activity against K. pneumoniae. P. aeruginosa and P. mirabilis AgNPs had the strongest anti-biofilm effect, with 84% and 83%, respectively, while A. baumanii's AgNPs had the lowest (79%). AgNPs of P. aeruginosa and P. luteola showed the highest (80%) anti-biofilm action against the development of pre- and post-mature biofilms formed by K. pneumoniae, while AgNPs from S. mitis exhibited the lowest levels (69%). Conclusion: AgNPs generated by Gram positive and Gram-negative bacteria, when exposed to K. pneumoniae isolated from RTIs had a good antibacterial impact and inhibited the formation of biofilm by K. pneumonia and hence could be used as an antibacterial agent against K. pneumoniae infecting the respiratory tract.
Jordan curve theorem is one of the classical theorems of mathematics, it states the following : If is a graph of a simple closed curve in the complex plane the complement of is the union of two regions, being the common boundary of the two regions. One of the region is bounded and the other is unbounded. We introduced in this paper one of Jordan's theorem generalizations. A new type of space is discussed with some properties and new examples. This new space called Contractible -space.
المتغير العشوائي X له توزيع أسي اذا كان له دالة احتمالية الكثافة بالشكل:
عندما ، هذه هي الحالة الخاصة لتوزيع كاما.
غالباً جداً ولسبب معقول تأخذ . الحالة الخاصة لـ (1) التي نحصل عليها تسمى بالتوزيع الاسي لمعلمة واحدة.
اذا كانت ، ، التوزيع في هذه الحالة يسمى التوزيع الاسي القياسي
اما بالنسب
... Show MoreLet R be a commutative ring with unity and let M be a left R-module. We define a proper submodule N of M to be a weakly prime if whenever r  R, x  M, 0  r x  N implies x  N or r  (N:M). In fact this concept is a generalization of the concept weakly prime ideal, where a proper ideal P of R is called a weakly prime, if for all a, b  R, 0  a b  P implies a  P or b  P. Various properties of weakly prime submodules are considered.
Let be a commutative ring with an identity and be a unitary -module. We say that a non-zero submodule of is primary if for each with en either or and an -module is a small primary if = for each proper submodule small in. We provided and demonstrated some of the characterizations and features of these types of submodules (modules).
Let R be a commutative ring with 10 and M is a unitary R-module . In this paper , our aim is to continue studying 2-absorbing submodules which are introduced by A.Y. Darani and F. Soheilina . Many new properties and characterizations are given .
Let be a commutative ring with identity and let be an R-module. We call an R-submodule of as P-essential if for each nonzero prime submodule of and 0 . Also, we call an R-module as P-uniform if every non-zero submodule of is P-essential. We give some properties of P-essential and introduce many properties to P-uniform R-module. Also, we give conditions under which a submodule of a multiplication R-module becomes P-essential. Moreover, various properties of P-essential submodules are considered.
The soft sets were known since 1999, and because of their wide applications and their great flexibility to solve the problems, we used these concepts to define new types of soft limit points, that we called soft turning points.Finally, we used these points to define new types of soft separation axioms and we study their properties.
Let R be associative; ring; with an identity and let D be unitary left R- module; . In this work we present semiannihilator; supplement submodule as a generalization of R-a- supplement submodule, Let U and V be submodules of an R-module D if D=U+V and whenever Y≤ V and D=U+Y, then annY≪R;. We also introduce the the concept of semiannihilator -supplemented ;modules and semiannihilator weak; supplemented modules, and we give some basic properties of this conseptes.