In this paper we define and study new generalizations of continuous functions namely, -weakly (resp., w-closure, w-strongly) continuous and the main properties are studies: (a) If f : X®Y is w-weakly (resp., w-closure, w-strongly) continuous, then for any AÌX and any BÌY the restrictions fïA : A®Y and fB : f -1(B)®B are w-weakly (resp., w-closure, w-strongly) continuous. (b) Comparison between deferent forms of generalizations of continuous functions. (c) Relationship between compositions of deferent forms of generalizations of continuous functions. Moreover, we expanded the above generalizations and namely almost w-weakly (resp., w-closure, w-strongly) continuous functions and we state and prove several results concerning it.
Abstract
The research aims to build a training program to develop some executive functions for kindergarten children. To achieve this goal, the two researchers built the program according to the following steps:
1. Determining the general objective of the program.
2. Determining the behavioral objectives of the program.
3. Determining the included content in the program.
4. Implementing the content of the activities of the program.
5. Evaluating the Program.
The program included (12) training activities, the training activities included several items: the title of the activity, the time of implementation of the activity, the general objective of the activity, the procedural behavioral objective, the means and tools u
Titanium dioxide nanoparticles (TiO2 NPs) are generally used in different types of applications such as the industry of plastics, paper industry, paints, toothpaste, cosmetics, sunscreens, and in various lifestyles, because of the vast range of applications and our daily exposure to these nanoparticles and a lack of information on animal and human health this study was designed to reveal dose and time-dependent effects of TiO2-NPs on the thyroid gland and kidney functions in male rats.
For this study 54, Sprague-Dawley albino adult male rats were classified into three main groups each of 18 rats treated for a particular duration (1,2, and 4) weeks respectively. Each group was subdivided i
... Show MoreAbstract:In this paper, some probability characteristics functions (moments, variances,convariance, and spectral density functions) are found depending upon the smallestvariance of the solution of some stochastic Fredholm integral equation contains as aknown function, the sine wave function
In this paper we introduce a new class of degree of best algebraic approximation polynomial Α,, for unbounded functions in weighted space Lp,α(X), 1 ∞ .We shall prove direct and converse theorems for best algebraic approximation in terms modulus of smoothness in weighted space
We introduce some new generalizations of some definitions which are, supra closure converge to a point, supra closure directed toward a set, almost supra converges to a set, almost supra cluster point, a set supra H-closed relative, supra closure continuous functions, supra weakly continuous functions, supra compact functions, supra rigid a set, almost supra closed functions and supra perfect functions. And we state and prove several results concerning it
In this research, some probability characteristics functions (probability density, characteristic, correlation and spectral density) are derived depending upon the smallest variance of the exact solution of supposing stochastic non-linear Fredholm integral equation of the second kind found by Adomian decomposition method (A.D.M)
The concern of this article is the calculation of an upper bound of second Hankel determinant for the subclasses of functions defined by Al-Oboudi differential operator in the unit disc. To study special cases of the results of this article, we give particular values to the parameters A, B and λ
According to the theory of regular geometric functions, the relevance of geometry to analysis is a critical feature. One of the significant tools to study operators is to utilize the convolution product. The dynamic techniques of convolution have attracted numerous complex analyses in current research. In this effort, an attempt is made by utilizing the said techniques to study a new linear complex operator connecting an incomplete beta function and a Hurwitz–Lerch zeta function of certain meromorphic functions. Furthermore, we employ a method based on the first-order differential subordination to derive new and better differential complex inequalities, namely differential subordinations.
In this work, an explicit formula for a class of Bi-Bazilevic univalent functions involving differential operator is given, as well as the determination of upper bounds for the general Taylor-Maclaurin coefficient of a functions belong to this class, are established Faber polynomials are used as a coordinated system to study the geometry of the manifold of coefficients for these functions. Also determining bounds for the first two coefficients of such functions.
In certain cases, our initial estimates improve some of the coefficient bounds and link them to earlier thoughtful results that are published earlier.
In this paper, we proposed to zoom Volterra equations system Altfazlah linear complementarity of the first type in this approximation were first forming functions notch Baschtdam matrix and then we discussed the approach and stability, to notch functions