A joke is something that is said, written, or done to cause amusement or laughter. It could be a short piece or a long narrative joke, but either way it ends in a punchline, where the joke contains a second conflicting meaning. Sometimes when we read a joke, we understand it directly and fully, but this is not always the case. When a writer writes a joke, he intends to manipulate the reader in a way that the reader doesn’t get the joke at once. He does that by using pun on words or any other word play. We, as listeners to the joke, try to get the message depending mostly on the tone of the voice, in addition to other factors concerning vocabulary and grammar. But as readers of the joke, we need more other factors in order to get to the intended meaning of the joke. One of these important factors is punctuation. Punctuation is the use of certain signs which help understand a piece of writing. It is used to create clarity, sense, and stress in contexts, because using the correct punctuation helps us to convey our thoughts as we intend them to. So is the use of punctuation marks in writing a joke is essential in order to understand it? Or is it just helpful sometimes? What happens if the writer doesn’t use punctuation marks when writing the joke? Would this affect us in getting the meaning of the joke? In this study we try to answer these rising questions.
Steganography is a mean of hiding information within a more obvious form of
communication. It exploits the use of host data to hide a piece of information in such a way
that it is imperceptible to human observer. The major goals of effective Steganography are
High Embedding Capacity, Imperceptibility and Robustness. This paper introduces a scheme
for hiding secret images that could be as much as 25% of the host image data. The proposed
algorithm uses orthogonal discrete cosine transform for host image. A scaling factor (a) in
frequency domain controls the quality of the stego images. Experimented results of secret
image recovery after applying JPEG coding to the stego-images are included.
A LiF (TLD-700) PTFED disc has adiameter of (13mm) and thickness of (0.4mm) for study the response and sensetivity of this material for gamma and beta rays by using (TOLEDO) system from pitman company. In order to calibrate the system and studying the calibration factor. Discs were irradiated for Gamma and Beta rays and comparing with the theoretical doses. The exposure range is between 15×10-2 mGy to 1000×10-2 mGy. These doses are within the range of normal radiation field for workers.
This paper introduces a relation between resultant and the Jacobian determinant
by generalizing Sakkalis theorem from two polynomials in two variables to the case of (n) polynomials in (n) variables. This leads us to study the results of the type: , and use this relation to attack the Jacobian problem. The last section shows our contribution to proving the conjecture.
This paper adapted the neural network for the estimating of the direction of arrival (DOA). It uses an unsupervised adaptive neural network with GHA algorithm to extract the principal components that in turn, are used by Capon method to estimate the DOA, where by the PCA neural network we take signal subspace only and use it in Capon (i.e. we will ignore the noise subspace, and take the signal subspace only).
Median filter is adopted to match the noise statistics of the degradation seeking good quality smoothing images. Two methods are suggested in this paper(Pentagonal-Hexagonal mask and Scan Window Mask), the study involved modified median filter for improving noise suppression, the modification is considered toward more reliable results. Modification median filter (Pentagonal-Hexagonal mask) was found gave better results (qualitatively and quantitatively ) than classical median filters and another suggested method (Scan Window Mask), but this will be on the account of the time required. But sometimes when the noise is line type the cross 3x3 filter preferred to another one Pentagonal-Hexagonal with few variation. Scan Window Mask gave bett
... Show More