The population has been trying to use clean energy instead of combustion. The choice was to use liquefied petroleum gas (LPG) for domestic use, especially for cooking due to its advantages as a light gas, a lower cost, and clean energy. Residential complexes are supplied with liquefied petroleum gas for each housing unit, transported by pipes from LPG tanks to the equipment. This research aims to simulate the design and performance design of the LPG system in the building that is applied to a residential complex in Baghdad taken as a study case with eight buildings. The building has 11 floors, and each floor has four apartments. The design in this study has been done in two parts, part one is the design of an LPG system for one building, and the second part is the design of an LPG system for a complex containing eight buildings. The results were obtained by using mathematical equations and using the Pipe Flow expert v7.30 program to design and analyze with explaining steps in the program to design.
This deals with estimation of Reliability function and one shape parameter (?) of two- parameters Burr – XII , when ?(shape parameter is known) (?=0.5,1,1.5) and also the initial values of (?=1), while different sample shze n= 10, 20, 30, 50) bare used. The results depend on empirical study through simulation experiments are applied to compare the four methods of estimation, as well as computing the reliability function . The results of Mean square error indicates that Jacknif estimator is better than other three estimators , for all sample size and parameter values
In this paper a new structure for the AVR of the power system exciter is proposed and designed using digital-based LQR. With two weighting matrices R and Q, this method produces an optimal regulator that is used to generate the feedback control law. These matrices are called state and control weighting matrices and are used to balance between the relative importance of the input and the states in the cost function that is being optimized. A sample power system composed of single machine connected to an infinite- bus bar (SMIB) with both a conventional and a proposed Digital AVR (DAVR) is simulated. Evaluation results show that the DAVR damps well the oscillations of the terminal voltage and presents a faster respo
... Show MoreEnvironmental pollution is regarded as a major problem, and traditional strategies such as chemical or physical remediation are not sufficient to overcome the problems of pollution. Petroleum-contaminated soil results in ecological problems, representing a danger to human health. Bioremediation has received remarkable attention, and it is a procedure that uses a biological agent to remove toxic waste from contaminated soil. This approach is easy to handle, inexpensive, and environmentally friendly; its results are highly satisfactory. Bioremediation is a biodegradation process in which the organic contaminants are completely mineralized to inorganic compounds, carbon dioxide, and water. This review discusses the bioremediation of petroleum-
... Show MoreIn this article, we design an optimal neural network based on new LM training algorithm. The traditional algorithm of LM required high memory, storage and computational overhead because of it required the updated of Hessian approximations in each iteration. The suggested design implemented to converts the original problem into a minimization problem using feed forward type to solve non-linear 3D - PDEs. Also, optimal design is obtained by computing the parameters of learning with highly precise. Examples are provided to portray the efficiency and applicability of this technique. Comparisons with other designs are also conducted to demonstrate the accuracy of the proposed design.
This paper presents a modified training method for Recurrent Neural Networks. This method depends on the Non linear Auto Regressive (NARX) model with Modified Wavelet Function as activation function (MSLOG) in the hidden layer. The modified model is known as Modified Recurrent Neural (MRN). It is used for identification Forward dynamics of four Degrees of Freedom (4-DOF) Selective Compliance Assembly Robot Arm (SCARA) manipulator robot. This model is also used in the design of Direct Inverse Control (DIC). This method is compared with Recurrent Neural Networks that used Sigmoid activation function (RS) in the hidden layer and Recurrent Neural Networks with Wavelet activation function (RW). Simulation results shows that the MRN model is bett
... Show MoreThe analysis, behavior of two-phase flow incompressible fluid in T-juction is done by using "A Computational Fluid Dynamic (CFD) model" that application division of different in industries. The level set method was based in “Finite Element method”. In our search the behavior of two phase flow (oil and water) was studed. The two-phase flow is taken to simulate by using comsol software 4.3. The multivariable was studying such as velocity distribution, share rate, pressure and the fraction of volume at various times. The velocity was employed at the inlet (0.2633, 0.1316, 0.0547 and 0.0283 m/s) for water and (0.1316 m/s) for oil, over and above the pressure set at outlet as a boundary condition. It was observed through the program
... Show MoreIn this research Artificial Neural Network (ANN) technique was applied to study the filtration process in water treatment. Eight models have been developed and tested using data from a pilot filtration plant, working under different process design criteria; influent turbidity, bed depth, grain size, filtration rate and running time (length of the filtration run), recording effluent turbidity and head losses. The ANN models were constructed for the prediction of different performance criteria in the filtration process: effluent turbidity, head losses and running time. The results indicate that it is quite possible to use artificial neural networks in predicting effluent turbidity, head losses and running time in the filtration process, wi
... Show More