The population has been trying to use clean energy instead of combustion. The choice was to use liquefied petroleum gas (LPG) for domestic use, especially for cooking due to its advantages as a light gas, a lower cost, and clean energy. Residential complexes are supplied with liquefied petroleum gas for each housing unit, transported by pipes from LPG tanks to the equipment. This research aims to simulate the design and performance design of the LPG system in the building that is applied to a residential complex in Baghdad taken as a study case with eight buildings. The building has 11 floors, and each floor has four apartments. The design in this study has been done in two parts, part one is the design of an LPG system for one building, and the second part is the design of an LPG system for a complex containing eight buildings. The results were obtained by using mathematical equations and using the Pipe Flow expert v7.30 program to design and analyze with explaining steps in the program to design.
In this article, we design an optimal neural network based on new LM training algorithm. The traditional algorithm of LM required high memory, storage and computational overhead because of it required the updated of Hessian approximations in each iteration. The suggested design implemented to converts the original problem into a minimization problem using feed forward type to solve non-linear 3D - PDEs. Also, optimal design is obtained by computing the parameters of learning with highly precise. Examples are provided to portray the efficiency and applicability of this technique. Comparisons with other designs are also conducted to demonstrate the accuracy of the proposed design.
In this research estimated the parameters of Gumbel distribution Type 1 for Maximum values through the use of two estimation methods:- Moments (MoM) and Modification Moments(MM) Method. the Simulation used for comparison between each of the estimation methods to reach the best method to estimate the parameters where the simulation was to generate random data follow Gumbel distributiondepending on three models of the real values of the parameters for different sample sizes with samples of replicate (R=500).The results of the assessment were put in tables prepared for the purpose of comparison, which made depending on the mean squares error (MSE).
In the present study, the effectiveness of a procedure of electrocoagulation for removing chemical oxygen demand (COD) from the wastewater of petroleum refinery has been evaluated. Aluminum and stainless steel electrodes were used as a sacrificial anode and cathode respectively. The effect of current density (4-20mAcm−2), pH (3-11), and NaCl concentration (0-4g/l) on efficiency of removal of chemical oxygen demand was investigated. The results have shown that increasing of current density led to increase the efficiency of COD removal while increasing NaCl concentration resulted in decreasing of COD removal efficiency. Effect of pH was found to be lowering COD re
Electromyography (EMG) is being explored for evaluating muscle activity. For gait analysis, EMG needs to be small, lightweight, portable device, and with low power consumption. The proposed superficial EMG (sEMG) system is aimed to be used in rehabilitation centers and biomechanics laboratories for gait analysis in Iraq.
The system is built using MyoWare, which is controlled by using STM32F100 microcontroller. The sEMG signal is transferred via Bluetooth to the computer (about 30m range) for further processing. MATLAB is used for sEMG signal conditioning. The overall system cost (without computer) is about $80. The proposed system is validated using wired NORAXON EMG using the mean root mean squared metho
... Show MoreIn this research Artificial Neural Network (ANN) technique was applied to study the filtration process in water treatment. Eight models have been developed and tested using data from a pilot filtration plant, working under different process design criteria; influent turbidity, bed depth, grain size, filtration rate and running time (length of the filtration run), recording effluent turbidity and head losses. The ANN models were constructed for the prediction of different performance criteria in the filtration process: effluent turbidity, head losses and running time. The results indicate that it is quite possible to use artificial neural networks in predicting effluent turbidity, head losses and running time in the filtration process, wi
... Show More إن المقصود باختبارات حسن المطابقة هو التحقق من فرضية العدم القائمة على تطابق مشاهدات أية عينة تحت الدراسة لتوزيع احتمالي معين وترد مثل هكذا حالات في التطبيق العملي بكثرة وفي كافة المجالات وعلى الأخص بحوث علم الوراثة والبحوث الطبية والبحوث الحياتية ,عندما اقترح كلا من Shapiro والعالم Wilk عام 1965 اختبار حسن المطابقة الحدسي مع معالم القياس
(
The objective of this study was tointroduce a recursive least squares (RLS) parameter estimatorenhanced by using a neural network (NN) to facilitate the computing of a bit error rate (BER) (error reduction) during channels estimation of a multiple input-multiple output orthogonal frequency division multiplexing (MIMO-OFDM) system over a Rayleigh multipath fading channel.Recursive least square is an efficient approach to neural network training:first, the neural network estimator learns to adapt to the channel variations then it estimates the channel frequency response. Simulation results show that the proposed method has better performance compared to the conventional methods least square (LS) and the original RLS and it is more robust a
... Show More