Today’s modern medical imaging research faces the challenge of detecting brain tumor through Magnetic Resonance Images (MRI). Normally, to produce images of soft tissue of human body, MRI images are used by experts. It is used for analysis of human organs to replace surgery. For brain tumor detection, image segmentation is required. For this purpose, the brain is partitioned into two distinct regions. This is considered to be one of the most important but difficult part of the process of detecting brain tumor. Hence, it is highly necessary that segmentation of the MRI images must be done accurately before asking the computer to do the exact diagnosis. Earlier, a variety of algorithms were developed for segmentation of MRI images by using different tools and techniques. However, this paper presents a comprehensive review of the methods and techniques used to detect brain tumor through MRI image segmentation. Lastly, the paper concludes with a concise discussion and provides a direction toward the upcoming trend of more advanced research studies on brain image segmentation and Tumor detection.
The aim of this paper is to study the Zariski topology of a commutative KU-algebra. Firstly, we introduce new concepts of a KU-algebra, such as KU-lattice, involutory ideal and prime ideal and investigate some basic properties of these concepts. Secondly, the notion of the topology spectrum of a commutative KU-algebra is studied and several properties of this topology are provided. Also, we study the continuous map of this topological space.
In this paper, various aspects of smart grids are described. These aspects include the components of smart grids, the detailed functions of the smart energy meters within the smart grids and their effects on increasing the awareness, the advantages and disadvantages of smart grids, and the requirements of utilizing smart grids. To put some light on the difference between smart grids and traditional utility grids, some aspects of the traditional utility grids are covered in this paper as well.
Systems on Chips (SoCs) architecture complexity is result of integrating a large numbers of cores in a single chip. The approaches should address the systems particular challenges such as reliability, performance, and power constraints. Monitoring became a necessary part for testing, debugging and performance evaluations of SoCs at run time, as On-chip monitoring is employed to provide environmental information, such as temperature, voltage, and error data. Real-time system validation is done by exploiting the monitoring to determine the proper operation of a system within the designed parameters. The paper explains the common monitoring operations in SoCs, showing the functionality of thermal, voltage and soft error monitors. The different
... Show MoreThis paper generalizes and improves the results of Margenstren, by proving that the number of -practical numbers which is defined by has a lower bound in terms of . This bound is more sharper than Mangenstern bound when Further general results are given for the existence of -practical numbers, by proving that the interval contains a -practical for all
We used to think of grammar as the bones of the language and vocabulary as the flesh to be added given that language consisted largely of life generated chunks of lexis. This “skeleton image” has been proverbially used to refer to that central feature of lexis named collocation- an idea that for the first 15 years of language study and analysis gave a moment‟s thought to English classroom material and methodology.
The work of John Sinclair, Dave Willis, Ron Carter, Michael McCarthy, Michael Lewis, and many others have all contributed to the way teachers today approach the area of lexis and what it means in the teaching/learning process of the language. This also seems to have incorporated lexical ideas into the teaching mechanis
With the quick grow of multimedia contents, from among this content, face recognition has got a lot of significant, specifically in latest little years. The face as object formed of various recognition characteristics for detect; so, it is still the most challenge research domain for researchers in area of image processing and computer vision. In this survey article, tried to solve the most demanding facial features like illuminations, aging, pose variation, partial occlusion and facial expression. Therefore, it indispensable factors in the system of facial recognition when performed on facial pictures. This paper study the most advanced facial detection techniques too, approaches: Hidden Markov Models, Principal Component Analysis (PCA)
... Show MoreThe concept of the order sum graph associated with a finite group based on the order of the group and order of group elements is introduced. Some of the properties and characteristics such as size, chromatic number, domination number, diameter, circumference, independence number, clique number, vertex connectivity, spectra, and Laplacian spectra of the order sum graph are determined. Characterizations of the order sum graph to be complete, perfect, etc. are also obtained.
The present work is qualitative descriptive. It aims to examine the idiosyncratic schema when deciphering the selected violence-based panel from Nasser Ibrahim’s caricatures. The researchers accordingly adopted part of Sharifian’s (2011) Cultural Schema model, particularly that part that is concerned with the examining the micro/idiosyncratic level of understanding. The study has revealed that the participants have not only differed among themselves regarding the way a figure is being denotatively conceptualized, they also highlighted different exact conceptualizations for the same figure, such as: using various adjectives that reflect various levels of intensity, emphasizing the behavioral aspect or the appearance of the figure, ado
... Show MoreThe field of Optical Character Recognition (OCR) is the process of converting an image of text into a machine-readable text format. The classification of Arabic manuscripts in general is part of this field. In recent years, the processing of Arabian image databases by deep learning architectures has experienced a remarkable development. However, this remains insufficient to satisfy the enormous wealth of Arabic manuscripts. In this research, a deep learning architecture is used to address the issue of classifying Arabic letters written by hand. The method based on a convolutional neural network (CNN) architecture as a self-extractor and classifier. Considering the nature of the dataset images (binary images), the contours of the alphabet
... Show More