A strong sign language recognition system can break down the barriers that separate hearing and speaking members of society from speechless members. A novel fast recognition system with low computational cost for digital American Sign Language (ASL) is introduced in this research. Different image processing techniques are used to optimize and extract the shape of the hand fingers in each sign. The feature extraction stage includes a determination of the optimal threshold based on statistical bases and then recognizing the gap area in the zero sign and calculating the heights of each finger in the other digits. The classification stage depends on the gap area in the zero signs and the number of opened fingers in the other signs as well as the sequence in which the opened fingers appear for those that have the same number of opened fingers. The conducted test results showed the system’s high capability to classify all the digits; where both the precision and F-score percentages of the proposed model reached the desired optimal value (100%).
In many video and image processing applications, the frames are partitioned into blocks, which are extracted and processed sequentially. In this paper, we propose a fast algorithm for calculation of features of overlapping image blocks. We assume the features are projections of the block on separable 2D basis functions (usually orthogonal polynomials) where we benefit from the symmetry with respect to spatial variables. The main idea is based on a construction of auxiliary matrices that virtually extends the original image and makes it possible to avoid a time-consuming computation in loops. These matrices can be pre-calculated, stored and used repeatedly since they are independent of the image itself. We validated experimentally th
... Show MoreTraffic classification is referred to as the task of categorizing traffic flows into application-aware classes such as chats, streaming, VoIP, etc. Most systems of network traffic identification are based on features. These features may be static signatures, port numbers, statistical characteristics, and so on. Current methods of data flow classification are effective, they still lack new inventive approaches to meet the needs of vital points such as real-time traffic classification, low power consumption, ), Central Processing Unit (CPU) utilization, etc. Our novel Fast Deep Packet Header Inspection (FDPHI) traffic classification proposal employs 1 Dimension Convolution Neural Network (1D-CNN) to automatically learn more representational c
... Show MoreThis paper studies the adaptive coded modulation for coded OFDM system using punctured convolutional code, channel estimation, equalization and SNR estimation. The channel estimation based on block type pilot arrangement is performed by sending pilots at every sub carrier and using this estimation for a specific number of following symbols. Signal to noise ratio is estimated at receiver and then transmitted to the transmitter through feedback channel ,the transmitter according to the estimated SNR select appropriate modulation scheme and coding rate which maintain constant bit error rate
lower than the requested BER. Simulation results show that better performance is confirmed for target bit error rate (BER) of (10-3) as compared to c
synthesis, Composition, Spectral, Geometry and Antibacterial Applications ofMn(||),Ni(||),Co(||),Cu(||) and Hg(||) schiff Base complexes of N2O2 mixed donor with 1,10-phenanthroline
In this paper a theoretical attempt is made to determine whether changes in the aorta diameter at different location along the aorta can be detected by brachial artery measurement. The aorta is divided into six main parts, each part with 4 lumps of 0.018m length. It is assumed that a desired section of the aorta has a radius change of 100,200, 500%. The results show that there is a significant change for part 2 (lumps 5-8) from the other parts. This indicates that the nearest position to the artery gives the significant change in the artery wave pressure while other parts of the aorta have a small effect.
In recent years, there has been expanding development in the vehicular part and the number of vehicles moving on the roads in all the sections of the country. Arabic vehicle number plate identification based on image processing is a dynamic area of this work; this technique is used for security purposes such as tracking of stolen cars and access control to restricted areas. The License Plate Recognition System (LPRS) exploits a digital camera to capture vehicle plate numbers is used as input to the proposed recognition system. Basically, the proposed system consists of three phases, vehicle license plate localization, character segmentation, and character recognition, the License Plate (LP) detection is presented using canny edge detection
... Show More