A strong sign language recognition system can break down the barriers that separate hearing and speaking members of society from speechless members. A novel fast recognition system with low computational cost for digital American Sign Language (ASL) is introduced in this research. Different image processing techniques are used to optimize and extract the shape of the hand fingers in each sign. The feature extraction stage includes a determination of the optimal threshold based on statistical bases and then recognizing the gap area in the zero sign and calculating the heights of each finger in the other digits. The classification stage depends on the gap area in the zero signs and the number of opened fingers in the other signs as well as the sequence in which the opened fingers appear for those that have the same number of opened fingers. The conducted test results showed the system’s high capability to classify all the digits; where both the precision and F-score percentages of the proposed model reached the desired optimal value (100%).
In this paper, a new method of selection variables is presented to select some essential variables from large datasets. The new model is a modified version of the Elastic Net model. The modified Elastic Net variable selection model has been summarized in an algorithm. It is applied for Leukemia dataset that has 3051 variables (genes) and 72 samples. In reality, working with this kind of dataset is not accessible due to its large size. The modified model is compared to some standard variable selection methods. Perfect classification is achieved by applying the modified Elastic Net model because it has the best performance. All the calculations that have been done for this paper are in
Autism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D
... Show MoreClinical keratoconus (KCN) detection is a challenging and time-consuming task. In the diagnosis process, ophthalmologists must revise demographic and clinical ophthalmic examinations. The latter include slit-lamb, corneal topographic maps, and Pentacam indices (PI). We propose an Ensemble of Deep Transfer Learning (EDTL) based on corneal topographic maps. We consider four pretrained networks, SqueezeNet (SqN), AlexNet (AN), ShuffleNet (SfN), and MobileNet-v2 (MN), and fine-tune them on a dataset of KCN and normal cases, each including four topographic maps. We also consider a PI classifier. Then, our EDTL method combines the output probabilities of each of the five classifiers to obtain a decision b
Been in this gravel study the effect of Alchgag fast neutrons emitted by the source on the electrical properties of silicon solar cells monounsaturated crystal at a constant rate of neutron flow rate of a wide range of neutron flow speed ranges for periods of time ranging from 2-10 hours
G-system composed of three isolates G3 ( Bacillus),G12 ( Arthrobacter )and G27 ( Brevibacterium) was used to detect the mutagenicity of the anticancer drug, cyclophosphamide (CP) under conditions similar to that used for standard mutagen, Nitrosoguanidine (NTG). The CP effected the survival fraction of isolates after treatment for 15 mins using gradual increasing concentrations, but at less extent comparing to NTG. The mutagenic effect of CP was at higher level than that of NTG when using streptomycin as a genetic marker, but the situation was reversed when using rifampicin resistant as a report marker. The latter effect appeared upon recording the mutagen efficiency (ie., number of induced mutants/microgram of mutagen). Measuring the R
... Show MoreObjective: The study aimed to identify the adolescents' fast foods and snacks, and find out the relationship between fast
food, snacks and adolescents' demographic data (gender and Body Mass Index). Methodology: A descriptive study
was conducted on impact of fast foods and snacks upon adolescents' Body Mass Index in secondary schools at Baghdad
city, starting from 20
th of April 2013 to the end of October 2014. Non- probability (purposive) sample of 1254
adolescents were chosen from secondary schools of both sides of Al-Karkh and Al-Russafa sectors. Data was collected
through a specially constructed questionnaire format include (12) items multiple choice questions. The validity of the
questionnaire was determined thr
The research addressed the formal functions resulting from the use of various guiding signs in the design of the interior spaces of airports in various pragmatic, expressive and psychological aspects. The aim is to identify the functions the guiding signs perform in facilitating and organizing the travelers' movement and satisfying the needs of the visitors and users of the unfamiliar places which they intend to visit, the nature of the services offered by these signs as one of the important parts within their general design. The research also identified the concept and types of signs as a means of visual communication and how to employ them in the design of the airports public spaces, and what are the criteria of their use and fu
... Show More