In this paper, a Cholera epidemic model is proposed and studied analytically as well as numerically. It is assumed that the disease is transmitted by contact with Vibrio cholerae and infected person according to dose-response function. However, the saturated treatment function is used to describe the recovery process. Moreover, the vaccine against the disease is assumed to be utterly ineffective. The existence, uniqueness and boundedness of the solution of the proposed model are discussed. All possible equilibrium points and the basic reproduction number are determined. The local stability and persistence conditions are established. Lyapunov method and the second additive compound matrix are used to study the global stability of the system. The conditions that guarantee the occurrence of local bifurcation and backward bifurcation are determined. Finally, numerical simulation is used to investigate the global dynamical behavior of the Cholera epidemic model and understand the effects of parameters on evolution of the disease in the environment. It is observed that the solution of the model is very sensitive to varying in parameters values and different types of bifurcations are obtained including backward bifurcation.
Abstract
Epidemics that afflict humankind are descending renewed, plaguing them in the place and time they spread.
- The epidemic affects individuals and the movement of societies, and its treatment requires dealing with it according to Sharia, taking into account the current data and developments.
- Integrative jurisprudence: it is intended to know the practical legal rulings deduced from the combination of evidence of two or more sciences related to one topic related to it, and among these calamities is the Corona Covid-19 pandemic.
- It is permissible to use sterile materials that contain a percentage of alcohol in sterilizing hands and fogging places, including mosques.
T
... Show MoreLocal and global bifurcations of food web model consists of immature and mature preys, first predator, and second predator with the current of toxicity and harvesting was studied. It is shown that a trans-critical bifurcation occurs at the equilibrium point
In this work, the occurrence conditions of both local Bifurcation and persistence were studied, Saddle-node bifurcation appears near fourth point, near the first point, the second point and the third point a transcritical bifurcation occurred but no pitchfork bifurcation happened near any of the four equilibrium points. In addition to study conditions for Hopf-bifurcation near positive stable point that is the fourth point. Besides discuss persistence occurrence as globally property of the food chain of three species include prey, first predator and top predator with impact of toxin in all species and harvesting effect on the predator’s only. Numerical results for the set of hypothe
In this paper, the general framework for calculating the stability of equilibria, Hopf bifurcation of a delayed prey-predator system with an SI type of disease in the prey population, is investigated. The impact of the incubation period delay on disease transmission utilizing a nonlinear incidence rate was taken into account. For the purpose of explaining the predation process, a modified Holling type II functional response was used. First, the existence, uniform boundedness, and positivity of the solutions of the considered model system, along with the behavior of equilibria and the existence of Hopf bifurcation, are studied. The critical values of the delay parameter for which stability switches and the nature of the Hopf bifurcat
... Show MoreIn the present article, we implement the new iterative method proposed by Daftardar-Gejji and Jafari (NIM) [V. Daftardar-Gejji, H. Jafari, An iterative method for solving nonlinear functional equations, J. Math. Anal. Appl. 316 (2006) 753-763] to solve two problems; the first one is the problem of spread of a non-fatal disease in a population which is assumed to have constant size over the period of the epidemic, and the other one is the problem of the prey and predator. The results demonstrate that the method has many merits such as being derivative-free, overcome the difficulty arising in calculating Adomian polynomials to handle the nonlinear terms in Adomian Decomposition Method (ADM), does not require to calculate Lagrange multiplier a
... Show MoreThis study was for searching for Cholera Bacteria serotype which causes epidemiology Cholera in the 2007 in a fast method which contains (Rapid Visual Test) (Crystal V.C.) which was used for the first time in Iraq to diagnosis of Cholera Bacteria & compared with the traditional bacteriology method. The Cholera disease is one of the most dangerous epidemiological diseases which lead to death with a percentage of (50 – 70) % in the severe cases for untreated patients . For this purpose, 100 samples of stool from the patients from a (13) hospitals in Baghdad Governorate in the period from August to the end of December. The Cholera was diagnosis in two methods, 1st method was the fast method using the nitrocellulose which is coated with anti-
... Show MoreIn this paper, we study the incorporation of the commensalism interaction and harvesting on the Lotka–Volterra food chain model. The system provides one commensal prey, one harvested prey, and two predators. A set of preliminary results in local bifurcation analysis around each equilibrium point for the proposed model is discussed, such as saddle-node, transcritical and pitchfork. Some numerical analysis to confirm the accruing of local bifurcation is illustrated. To back up the conclusions of the mathematical study, a numerical simulation of the model is carried out with the help of the MATLAB program. It can be concluded that the system's coexistence can be achieved as long as the harvesting rate on the second prey population is
... Show MoreFor a mathematical model the local bifurcation like pitchfork, transcritical and saddle node occurrence condition is defined in this paper. With the existing of toxicity and harvesting in predator and prey it consist of stage-structured. Near the positive equilibrium point of mathematical model on the Hopf bifurcation with particular emphasis it established. Near the equilibrium point E0 the transcritical bifurcation occurs it is described with analysis. And it shown that at equilibrium points E1 and E2 happened the occurrence of saddle-node bifurcation. At each point the pitch fork bifurcation occurrence is not happened.
This paper deals with two preys and stage-structured predator model with anti-predator behavior. Sufficient conditions that ensure the appearance of local and Hopf bifurcation of the system have been achieved, and it’s observed that near the free predator, the free second prey and the free first prey equilibrium points there are transcritical or pitchfork and no saddle node. While near the coexistence equilibrium point there is transcritical, pitchfork and saddle node bifurcation. For the Hopf bifurcation near the coexistence equilibrium point have been studied. Further, numerical analysis has been used to validate the main results.