The regressor-based adaptive control is useful for controlling robotic systems with uncertain parameters but with known structure of robot dynamics. Unmodeled dynamics could lead to instability problems unless modification of control law is used. In addition, exact calculation of regressor for robots with more than 6 degrees of freedom is hard to be calculated, and the task could be more complex for robots. Whereas the adaptive approximation control is a powerful tool for controlling robotic systems with unmodeled dynamics. The local (partitioned) approximation-based adaptive control includes representation of the uncertain matrices and vectors in the robot model as finite combinations of basis functions. Update laws for the weighting matrices are obtained by the Lyapunov-like design. Therefore, this work is focused function approximation-based control algorithms considering centralized and decentralized approaches. In this work, the following control algorithms are designed: (1) Adaptive hybrid regressor-approximation control. This work attempts to combine the features of both the regressor and the approximation techniques in adaptive control. The regressor technique is a powerful tool for adaptive control of the known structure of modeling while the approximation is useful for estimation of time-varying uncertainty. Therefore, this work proposes adaptive hybrid regressor and approximation control for robots in both free and constrained spaces. The control law consists of three terms: (i) regressor term for initial estimation of the known structure of the robot dynamics, e.g. inertia matrix, Coriolis and centripetal matrix and gravity vector, and (ii) approximation term for estimation of internal and external disturbances resulted from the inexact calculation of regressor matrix and unknown modeling of friction, etc, and (iii) robust term consists of switching sgn(.) function. The control law is designed based on updating the uncertain parameters and the weighting coefficients corresponding to regressor and approximation respectively with position/force tracking purposes. The proposed controller is stable in the sense of Lyapunov stability. (2) Decentralized adaptive partitioned approximation control. Partitioned approximation control is avoided in most decentralized control algorithms; however, it is essential to design feedforward control with improved tracking accuracy. As a result, this work is focused on decentralized adaptive partitioned approximation control for complex robotic systems using the orthogonal basis functions as strong approximators. In essence, the partitioned approximation technique is intrinsically decentralized with some modifications. The proposed decentralized control law consists of three terms: the partitioned approximation-based feedforward term that is necessary for precise tracking, the high gain-based feedback term, and the adaptive sliding gain-based term for compensation of modeling error. The passivity property is essential to prove the stability of local stability of the individual subsystem with guaranteed global stability. Simulation experiments on 2-link robot and 6-link biped robot are performed to prove the effectiveness of the proposed algorithms.
Abstract
The economic and financial crises in the world economy series led to increased awareness of the importance of the internal control system, because it is one of the main pillars of any economic unit, as it works to verify the application of policies, regulations and laws and verification of asset protection from theft and embezzlement procedures, it is also working on trust accounting information imparted through the validation of accounting information, analyze and detect the misleading.
The existence the internal control system a factor in many of the accounting practices that limit the ability of the administration to produce misleading financial reporting
The
... Show MoreIn all process industries, the process variables like flow, pressure, level, concentration
and temperature are the main parameters that need to be controlled in both set point
and load changes.
A control system of propylene glycol production in a non isothermal (CSTR) was
developed in this work where the dynamic and control system based on basic mass
and energy balance were carried out.
Inlet concentration and temperature are the two disturbances, while the inlet
volumetric flow rate and the coolant temperature are the two manipulations. The
objective is to maintain constant temperature and concentration within the CSTR.
A dynamic model for non isothermal CSTR is described by a first order plus dead
time (FO
Chemotherapy is one of the most efficient methods for treating cancer patients. Chemotherapy aims to eliminate cancer cells as thoroughly as possible. Delivering medications to patients’ bodies through various methods, either oral or intravenous is part of the chemotherapy process. Different cell-kill hypotheses take into account the interactions of the expansion of the tumor volume, external drugs, and the rate of their eradication. For the control of drug usage and tumor volume, a model based smooth super-twisting control (MBSSTC) is proposed in this paper. Firstly, three nonlinear cell-kill mathematical models are considered in this work, including the log-kill, Norton-Simon, and hypotheses subject to parametric uncertainties and exo
... Show MoreThe purposes of study are to measure the perceived competence and the locus of control among sixth-grade students, to identify the statistical differences between the perceived competence and the locus of control among sixth-grade students regarding the variable of gender, achievement, and economical status, and lastly, explore the correlation relationship between perceived competence and locus of control among sixth-grade students, To do this, the researchers have constructed two scales: one to measure the perceived competence based on bandura's theory (social-cognitive theory) which consisted of (26) items and the other to measure the locus of control based on Rotter's theory (social-learning theory) which included (25) items. The samp
... Show MoreThe need for quick airborne transportation is critical, especially in emergencies. Drones with suspended payloads might be used to accomplish quick airborne transportation. Due to the environment or the drone's motion, the slung load may oscillate and lead the drone to fall. The altitude and attitude controls are the backbones of the drone's stability, and they must be adequately designed. Because of their symmetrical and simple structure, quadrotor helicopters are one of the most popular drone classes. In this work, a genetic algorithm with two weighted terms fitness function is used to adjust a Proportional-Integral-Derivative (PID) controller to compensate for the altitude and attitude controllers in a quadrotor drone
... Show MoreQuality is one of the important criteria to determine the success of product. So quality control is required for all stages of production to ensure a good final product with lowest possible losses. Control charts are the most important means used to monitor the quality and its accuracy is measured by quickly detecting unusual changes in the quality to maintain the product and reduce the costs and losses that may result from the defective items. There are different types of quality control charts and new types appeases involving the concept of fuzziness named multinomial fuzzy quality control chart (FM) , dividing the product to accepted and not may not be accurate therefore adding fuzziness concept to quality charts confirm and a
... Show MoreThe need for quick airborne transportation is critical, especially in emergencies. Drones with suspended payloads might be used to accomplish quick airborne transportation. Due to the environment or the drone's motion, the slung load may oscillate and lead the drone to fall. The altitude and attitude controls are the backbones of the drone's stability, and they must be adequately designed. Because of their symmetrical and simple structure, quadrotor helicopters are one of the most popular drone classes. In this work, a genetic algorithm with two weighted terms fitness function is used to adjust a Proportional-Integral-Derivative (PID) controller to compensate for the altitude and attitude controllers in a quadrotor drone with a slun
... Show MoreThe goal of this study is to build an application that can be used in difficult cases and sudden circumstances during the pandemic and post-disaster state, which can be the development of digital risk management and mitigating the difficult impact of the epidemic through the improvement of IT and IoT that can be fine by finding initial solutions and make the world like a digital city that could be managed by the network. We provide this study to gain an overview of reasons for delayed and exceeded costs in a select of thirty Iraqi case projects by controlling the time and cost. The drivers of delay have been investigated in multiple countries/contexts. however, there is little country data available under the conditions that have ch
... Show MoreThere is no doubt that the project control function is very important for administration, so the project Management depends on to monitor and control the project. The project control integrated to the planning which is the base of the administration functions; planning, organizing, directing, and controlling. Without project control cannot be insure to fulfill the plan of the project by the budget and specified time. The project management apply many methods of control to achieve the goals of project which are cost, time, and required specifications. Earned Value Management one of control methods that used in the project by international companies.
Earned Value Method is used in the project o
... Show More