Preferred Language
Articles
/
3BaXAowBVTCNdQwCxfVm
Deep clustering of Lagrangian trajectory for multi-task learning to energy saving in intelligent buildings using cooperative multi-agent

The intelligent buildings provided various incentives to get highly inefficient energy-saving caused by the non-stationary building environments. In the presence of such dynamic excitation with higher levels of nonlinearity and coupling effect of temperature and humidity, the HVAC system transitions from underdamped to overdamped indoor conditions. This led to the promotion of highly inefficient energy use and fluctuating indoor thermal comfort. To address these concerns, this study develops a novel framework based on deep clustering of lagrangian trajectories for multi-task learning (DCLTML) and adding a pre-cooling coil in the air handling unit (AHU) to alleviate a coupling issue. The proposed DCLTML exhibits great overall control and is suitable for multi-objective optimisation based on cooperative multi-agent systems (CMAS). The framework of DCLTML is used greedy iterative training to get an optimal set of weights and tabulated as a layer for each clustering structure. Such layers can deal with the challenges of large space and its massive data. Then the layer weights of each cluster are tuned by the Quasi-Newton (QN) algorithm to make the action sequence of CMAS optimal. Such a policy of CMAS effectively manipulates the inputs of the AHU, where the agents of the AHU activate the natural ventilation and set chillers into an idle state when the outdoor temperature crosses the recommended value. So, it is reasonable to assess the impact potential of thermal mass and hybrid ventilation strategy in reducing cooling energy; accordingly, the assigning results of the proposed DCLTML show that its main cooling coil saves >40% compared to the conventional benchmarks. Besides significant energy savings and improving environmental comfort, the DCLTML exhibits superior high-speed response and robustness performance and eliminates fatigue and wear due to shuttering valves. The results show that the DCLTML algorithm is a promising new approach for controlling HVAC systems. It is more robust to environmental variations than traditional controllers, and it can learn to control the HVAC system in a way that minimises energy consumption. The DCLTML algorithm is still under development, but it can potentially revolutionise how HVAC systems are controlled.

Scopus Clarivate Crossref
View Publication
Publication Date
Sat Jan 01 2022
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science (ijeecs)
A new smart approach of an efficient energy consumption management by using a machine-learning technique

Many consumers of electric power have excesses in their electric power consumptions that exceed the permissible limit by the electrical power distribution stations, and then we proposed a validation approach that works intelligently by applying machine learning (ML) technology to teach electrical consumers how to properly consume without wasting energy expended. The validation approach is one of a large combination of intelligent processes related to energy consumption which is called the efficient energy consumption management (EECM) approaches, and it connected with the internet of things (IoT) technology to be linked to Google Firebase Cloud where a utility center used to check whether the consumption of the efficient energy is s

... Show More
Crossref
Publication Date
Mon Jul 01 2013
Journal Name
2013 35th Annual International Conference Of The Ieee Engineering In Medicine And Biology Society (embc)
Scopus (2)
Crossref (1)
Scopus Crossref
View Publication
Publication Date
Sun Feb 03 2019
Journal Name
Journal Of The College Of Education For Women
The History of Multi Parties and its Effect on Political System in India

The History of Multi Parties and its Effect on Political System in India

View Publication Preview PDF
Publication Date
Wed Nov 20 2024
Journal Name
Journal Of Baghdad College Of Dentistry
The multi-detector computed tomographical analysis of bone density in impacted maxillary canines

Background: Maxillary canines are important aesthetically and functionally, but impacted canines are more difficult and time consuming to treat, the aim of this study is to investigate with multi-detector computed tomography the correlation between the bone density and the upper canine impaction. Material and method: A sample of Unilaterally impacted maxillary canines from 24 patients (19 female, 5 male) who were referred to accurately localize the impacted canines at al- Karkh general hospital were evaluated by a volumetric 3-d images by the multi-detector computed tomography to accurately measure the bone density of the maxillary cortical palate of the maxillary impacted canine side and compare it with the other side of the normally erupt

... Show More
View Publication Preview PDF
Publication Date
Thu Oct 01 2020
Journal Name
Journal Of Engineering Science And Technology
Scopus (4)
Scopus
Preview PDF
Publication Date
Tue Oct 13 2020
Journal Name
2020 Ieee International Conference On Mechatronics And Automation (icma)
Scopus (1)
Scopus Crossref
View Publication
Publication Date
Thu Dec 28 2017
Journal Name
Al-khwarizmi Engineering Journal
Tuning PID Controller by Neural Network for Robot Manipulator Trajectory Tracking

Ziegler and Nichols proposed the well-known Ziegler-Nichols method to tune the coefficients of PID controller. This tuning method is simple and gives fixed values for the coefficients which make PID controller have weak adaptabilities for the model parameters variation and changing in operating conditions. In order to achieve adaptive controller, the Neural Network (NN) self-tuning PID control is proposed in this paper which combines conventional PID controller and Neural Network learning capabilities. The proportional, integral and derivative (KP, KI, KD) gains are self tuned on-line by the NN output which is obtained due to the error value on the desired output of the system under control. The conventio

... Show More
View Publication Preview PDF
Publication Date
Wed Mar 01 2023
Journal Name
Iaes International Journal Of Artificial Intelligence (ij-ai)
Design and implementation monitoring robotic system based on you only look once model using deep learning technique

<span lang="EN-US">The need for robotics systems has become an urgent necessity in various fields, especially in video surveillance and live broadcasting systems. The main goal of this work is to design and implement a rover robotic monitoring system based on raspberry pi 4 model B to control this overall system and display a live video by using a webcam (USB camera) as well as using you only look once algorithm-version five (YOLOv5) to detect, recognize and display objects in real-time. This deep learning algorithm is highly accurate and fast and is implemented by Python, OpenCV, PyTorch codes and the Context Object Detection Task (COCO) 2020 dataset. This robot can move in all directions and in different places especially in

... Show More
Scopus (5)
Crossref (2)
Scopus Crossref
View Publication
Publication Date
Sun Jun 30 2013
Journal Name
Al-khwarizmi Engineering Journal
Estimation of SNR Including Quantization Error of Multi-Wavelength Lidar Receiver

 This paper comprises the design and operation of mono-static backscatter lidar station based on a pulsed Nd: YAG laser that operates at multiple wavelengths. The three-color lidar laser transmitter is based on the collinear fundamental 1064 nm, second harmonic 532 nm and a third harmonic 355nm output of a Nd:YAG laser. The most important parameter of lidar especially daytime operations is the signal-to-noise ratio (SNR) which gives some instructions in designing of lidar and it is often limit the effective range. The reason is that noises or interferences always badly affect the measured results. The inversion algorithms have been developed for the study of atmospheric aerosols. Signal-to-noise ratio (SNR) of three-color channel re

... Show More
View Publication Preview PDF
Publication Date
Sun Feb 03 2019
Journal Name
Journal Of The College Of Education For Women
OIL OF IRAQ AND MULTI-NATIONALITIES COMPANIES "Geopolitical point of view"

Multi-nationalities companies are the main companies in the progressed
countries that improve the current technology and, thus, become the main source of it.
These companies, in the first place, aim to increase the profits of its
investments to satisfy stock holders in the original countries to which these companies
belong.
It is a mean to interfere in the economic of countries especially the growing
ones and exploit their important natural resources. Since this research focus on the
dangers of these companies, mechanism of its work and its dangers on the most
important natural resources of our country which is oil; therefore, the research
confirm that this important natural treasure must be under an Iraqi cont

... Show More
View Publication Preview PDF