The intelligent buildings provided various incentives to get highly inefficient energy-saving caused by the non-stationary building environments. In the presence of such dynamic excitation with higher levels of nonlinearity and coupling effect of temperature and humidity, the HVAC system transitions from underdamped to overdamped indoor conditions. This led to the promotion of highly inefficient energy use and fluctuating indoor thermal comfort. To address these concerns, this study develops a novel framework based on deep clustering of lagrangian trajectories for multi-task learning (DCLTML) and adding a pre-cooling coil in the air handling unit (AHU) to alleviate a coupling issue. The proposed DCLTML exhibits great overall control and is suitable for multi-objective optimisation based on cooperative multi-agent systems (CMAS). The framework of DCLTML is used greedy iterative training to get an optimal set of weights and tabulated as a layer for each clustering structure. Such layers can deal with the challenges of large space and its massive data. Then the layer weights of each cluster are tuned by the Quasi-Newton (QN) algorithm to make the action sequence of CMAS optimal. Such a policy of CMAS effectively manipulates the inputs of the AHU, where the agents of the AHU activate the natural ventilation and set chillers into an idle state when the outdoor temperature crosses the recommended value. So, it is reasonable to assess the impact potential of thermal mass and hybrid ventilation strategy in reducing cooling energy; accordingly, the assigning results of the proposed DCLTML show that its main cooling coil saves >40% compared to the conventional benchmarks. Besides significant energy savings and improving environmental comfort, the DCLTML exhibits superior high-speed response and robustness performance and eliminates fatigue and wear due to shuttering valves. The results show that the DCLTML algorithm is a promising new approach for controlling HVAC systems. It is more robust to environmental variations than traditional controllers, and it can learn to control the HVAC system in a way that minimises energy consumption. The DCLTML algorithm is still under development, but it can potentially revolutionise how HVAC systems are controlled.
This paper presents a new RGB image encryption scheme using multi chaotic maps. Encrypting an image is performed via chaotic maps to confirm the properties of secure cipher namely confusion and diffusion are satisfied. Also, the key sequence for encrypting an image is generated using a combination of 1D logistic and Sine chaotic maps. Experimental results and the compassion results indicate that the suggested scheme provides high security against several types of attack, large secret keyspace and highly sensitive.
In recent years, encryption technology has been developed rapidly and many image encryption methods have been put forward. The chaos-based image encryption technique is a modern encryption system for images. To encrypt images, it uses random sequence chaos, which is an efficient way to solve the intractable problem of simple and highly protected image encryption. There are, however, some shortcomings in the technique of chaos-based image encryption, such limited accuracy issue. The approach focused on the chaotic system in this paper is to construct a dynamic IP permutation and S-Box substitution by following steps. First of all, use of a new IP table for more diffusion of al
... Show MoreIn this work, polyvinylpyrrolidone (PVP), multi-walled carbon nanotubes (MWCNTs) nanocomposite was prepared and hybridized with Graphene (Gr) by the solution casting method. The morphological and electrical properties were investigated by field effect scanning electron microscopy (FESEM) images, portraying a uniform dispersion of graphene within the PVP-MWCNT nanocomposite. The AC conductivity increased from (1.45552) to (2.34812) (Ω cm)-1 with the use of nanocomposite. The increasing continues for the AC conductivity after hybridized with graphene up to (7.20641) (Ω cm)-1. In addition, the performances of the prepared samples for gas sensor application have been investigated.
... Show MoreFar infrared photoconductive detectors based on multi-wall carbon nanotubes (MWCNTs) were fabricated and their characteristics were tested. MWCNTs films deposited on porous silicon (PSi) nanosurface by dip and drop coating techniques. Two types of deposited methods were used; dip coating sand drop –by-drop methods. As well as two types of detector were fabricated one with aluminum mask and the other without, and their figures of merits were studied. The detectors were illuminated by 2.2 and 2.5 Watt from CO2 of 10.6 m and tested. The surface morphology for the films is studied using AFM and SEM micrographs. The films show homogeneous distributed for CNTs on the PSi layer. The root mean square (r.m.s.) of the films surface roughness in
... Show MoreIn this research The study of Multi-level model (partial pooling model) we consider The partial pooling model which is one Multi-level models and one of the Most important models and extensive use and application in the analysis of the data .This Model characterized by the fact that the treatments take hierarchical or structural Form, in this partial pooling models, Full Maximum likelihood FML was used to estimated parameters of partial pooling models (fixed and random ), comparison between the preference of these Models, The application was on the Suspended Dust data in Iraq, The data were for four and a half years .Eight stations were selected randomly among the stations in Iraq. We use Akaik′s Informa
... Show MoreIn this research The study of Multi-level model (partial pooling model) we consider The partial pooling model which is one Multi-level models and one of the Most important models and extensive use and application in the analysis of the data .This Model characterized by the fact that the treatments take hierarchical or structural Form, in this partial pooling models, Full Maximum likelihood FML was used to estimated parameters of partial pooling models (fixed and random ), comparison between the preference of these Models, The application was on the Suspended Dust data in Iraq, The data were for four and a half years .Eight stations were selected randomly among the stations in Iraq. We use Akaik′s Informa
... Show MoreDiagnosing heart disease has become a very important topic for researchers specializing in artificial intelligence, because intelligence is involved in most diseases, especially after the Corona pandemic, which forced the world to turn to intelligence. Therefore, the basic idea in this research was to shed light on the diagnosis of heart diseases by relying on deep learning of a pre-trained model (Efficient b3) under the premise of using the electrical signals of the electrocardiogram and resample the signal in order to introduce it to the neural network with only trimming processing operations because it is an electrical signal whose parameters cannot be changed. The data set (China Physiological Signal Challenge -cspsc2018) was ad
... Show MoreTo ensure fault tolerance and distributed management, distributed protocols are employed as one of the major architectural concepts underlying the Internet. However, inefficiency, instability and fragility could be potentially overcome with the help of the novel networking architecture called software-defined networking (SDN). The main property of this architecture is the separation of the control and data planes. To reduce congestion and thus improve latency and throughput, there must be homogeneous distribution of the traffic load over the different network paths. This paper presents a smart flow steering agent (SFSA) for data flow routing based on current network conditions. To enhance throughput and minimize latency, the SFSA distrib
... Show MoreIn data mining and machine learning methods, it is traditionally assumed that training data, test data, and the data that will be processed in the future, should have the same feature space distribution. This is a condition that will not happen in the real world. In order to overcome this challenge, domain adaptation-based methods are used. One of the existing challenges in domain adaptation-based methods is to select the most efficient features so that they can also show the most efficiency in the destination database. In this paper, a new feature selection method based on deep reinforcement learning is proposed. In the proposed method, in order to select the best and most appropriate features, the essential policies
... Show More