The intelligent buildings provided various incentives to get highly inefficient energy-saving caused by the non-stationary building environments. In the presence of such dynamic excitation with higher levels of nonlinearity and coupling effect of temperature and humidity, the HVAC system transitions from underdamped to overdamped indoor conditions. This led to the promotion of highly inefficient energy use and fluctuating indoor thermal comfort. To address these concerns, this study develops a novel framework based on deep clustering of lagrangian trajectories for multi-task learning (DCLTML) and adding a pre-cooling coil in the air handling unit (AHU) to alleviate a coupling issue. The proposed DCLTML exhibits great overall control and is suitable for multi-objective optimisation based on cooperative multi-agent systems (CMAS). The framework of DCLTML is used greedy iterative training to get an optimal set of weights and tabulated as a layer for each clustering structure. Such layers can deal with the challenges of large space and its massive data. Then the layer weights of each cluster are tuned by the Quasi-Newton (QN) algorithm to make the action sequence of CMAS optimal. Such a policy of CMAS effectively manipulates the inputs of the AHU, where the agents of the AHU activate the natural ventilation and set chillers into an idle state when the outdoor temperature crosses the recommended value. So, it is reasonable to assess the impact potential of thermal mass and hybrid ventilation strategy in reducing cooling energy; accordingly, the assigning results of the proposed DCLTML show that its main cooling coil saves >40% compared to the conventional benchmarks. Besides significant energy savings and improving environmental comfort, the DCLTML exhibits superior high-speed response and robustness performance and eliminates fatigue and wear due to shuttering valves. The results show that the DCLTML algorithm is a promising new approach for controlling HVAC systems. It is more robust to environmental variations than traditional controllers, and it can learn to control the HVAC system in a way that minimises energy consumption. The DCLTML algorithm is still under development, but it can potentially revolutionise how HVAC systems are controlled.
Registration techniques are still considered challenging tasks to remote sensing users, especially after enormous increase in the volume of remotely sensed data being acquired by an ever-growing number of earth observation sensors. This surge in use mandates the development of accurate and robust registration procedures that can handle these data with varying geometric and radiometric properties. This paper aims to develop the traditional registration scenarios to reduce discrepancies between registered datasets in two dimensions (2D) space for remote sensing images. This is achieved by designing a computer program written in Visual Basic language following two main stages: The first stage is a traditional registration p
... Show MoreRegistration techniques are still considered challenging tasks to remote sensing users, especially after enormous increase in the volume of remotely sensed data being acquired by an ever-growing number of earth observation sensors. This surge in use mandates the development of accurate and robust registration procedures that can handle these data with varying geometric and radiometric properties. This paper aims to develop the traditional registration scenarios to reduce discrepancies between registered datasets in two dimensions (2D) space for remote sensing images. This is achieved by designing a computer program written in Visual Basic language following two main stages: The first stage is a traditional registration process by de
... Show MoreA long-span Prestressed Concrete Hunched Beam with Multi-Quadrilateral Opening has been developed as an alternative to steel structural elements. An experimental program was created and evaluated utilizing a single mid-span monotonic static load on simply supported beams, which included six beams with openings and the solid control beam without openings, to investigate the performance of such beams. The number and height of the quadrilateral openings are the variables to consider. According to test results, the presence of openings in the prestressed concrete hunched beam with multi-quadrilateral opening did not considerably affect their ultimate load capacity with respect to a contro
Recent advances in wireless communication systems have made use of OFDM technique to achieve high data rate transmission. The sensitivity to frequency offset between the carrier frequencies of the transmitter and the receiver is one of the major problems in OFDM systems. This frequency offset introduces inter-carrier interference in the OFDM symbol and then the BER performance reduced. In this paper a Multi-Orthogonal-Band MOB-OFDM system based on the Discrete Hartley Transform (DHT) is proposed to improve the BER performance. The OFDM spectrum is divided into equal sub-bands and the data is divided between these bands to form a local OFDM symbol in each sub-band using DHT. The global OFDM symbol is formed from all sub-bands together using
... Show MoreThis study focused on spectral clustering (SC) and three-constraint affinity matrix spectral clustering (3CAM-SC) to determine the number of clusters and the membership of the clusters of the COST 2100 channel model (C2CM) multipath dataset simultaneously. Various multipath clustering approaches solve only the number of clusters without taking into consideration the membership of clusters. The problem of giving only the number of clusters is that there is no assurance that the membership of the multipath clusters is accurate even though the number of clusters is correct. SC and 3CAM-SC aimed to solve this problem by determining the membership of the clusters. The cluster and the cluster count were then computed through the cluster-wise J
... Show MoreTo date, comprehensive reviews and discussions of the strengths and limitations of Remote Sensing (RS) standalone and combination approaches, and Deep Learning (DL)-based RS datasets in archaeology have been limited. The objective of this paper is, therefore, to review and critically discuss existing studies that have applied these advanced approaches in archaeology, with a specific focus on digital preservation and object detection. RS standalone approaches including range-based and image-based modelling (e.g., laser scanning and SfM photogrammetry) have several disadvantages in terms of spatial resolution, penetrations, textures, colours, and accuracy. These limitations have led some archaeological studies to fuse/integrate multip
... Show MoreBackground: Imaging has a critical role in the diagnosis and evaluation of cardiac diseases, beginning with chest radiography and fluoro-scopy and progressing to coronary angio-graphy, echocardiography, nuclear medicine and recently multidetector computed tomo-graphy (MDCT) as well as magnetic resonance (MR) imaging
Objective: To highlight the role of Multi-detector CT in the evaluation of coronary artery disease and its importance of being noninvasive diagnostic technique.
Methods: A cross sectional study for 20 patients. Patients were asked to fast 6 hours prior to the examination and the patients with heart rates above 65 beats per minute were given cardio-
... Show MoreIn this paper will be applied to a probability model of inventories periods of multiple stores of raw materials used in the cement industry, cement factory in Samawah and basic materials are limestone, soil normal, iron soil, fuel oil and gypsum. It was built of this model after the test and determine the distribution of demand during the supply period (waiting period) for each subject and independently of the rest of the material as it is not affected by any of the materials above interrelated in the process of supply, this test has been using the Statistical Package of (SPSS) and then was determining the amount of request optimum seeking in each batch and each substance known volume of economic optimization of
... Show MoreOptimizing system performance in dynamic and heterogeneous environments and the efficient management of computational tasks are crucial. This paper therefore looks at task scheduling and resource allocation algorithms in some depth. The work evaluates five algorithms: Genetic Algorithms (GA), Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), Firefly Algorithm (FA) and Simulated Annealing (SA) across various workloads achieved by varying the task-to-node ratio. The paper identifies Finish Time and Deadline as two key performance metrics for gauging the efficacy of an algorithm, and a comprehensive investigation of the behaviors of these algorithms across different workloads was carried out. Results from the experiment
... Show More