In this article we study the variance estimator for the normal distribution when the mean is un known depend of the cumulative function between unbiased estimator and Bays estimator for the variance of normal distribution which is used include Double Stage Shrunken estimator to obtain higher efficiency for the variance estimator of normal distribution when the mean is unknown by using small volume equal volume of two sample .
In this paper, we derived an estimators and parameters of Reliability and Hazard function of new mix distribution ( Rayleigh- Logarithmic) with two parameters and increasing failure rate using Bayes Method with Square Error Loss function and Jeffery and conditional probability random variable of observation. The main objective of this study is to find the efficiency of the derived of Bayesian estimator compared to the to the Maximum Likelihood of this function using Simulation technique by Monte Carlo method under different Rayleigh- Logarithmic parameter and sample sizes. The consequences have shown that Bayes estimator has been more efficient than the maximum likelihood estimator in all sample sizes with application
A non-parametric kernel method with Bootstrap technology was used to estimate the confidence intervals of the system failure function of the log-normal distribution trace data. These are the times of failure of the machines of the spinning department of the weaving company in Wasit Governorate. Estimating the failure function in a parametric way represented by the method of the maximum likelihood estimator (MLE). The comparison between the parametric and non-parametric methods was done by using the average of Squares Error (MES) criterion. It has been noted the efficiency of the nonparametric methods based on Bootstrap compared to the parametric method. It was also noted that the curve estimation is more realistic and appropriate for the re
... Show MoreIn this article, a numerical method integrated with statistical data simulation technique is introduced to solve a nonlinear system of ordinary differential equations with multiple random variable coefficients. The utilization of Monte Carlo simulation with central divided difference formula of finite difference (FD) method is repeated n times to simulate values of the variable coefficients as random sampling instead being limited as real values with respect to time. The mean of the n final solutions via this integrated technique, named in short as mean Monte Carlo finite difference (MMCFD) method, represents the final solution of the system. This method is proposed for the first time to calculate the numerical solution obtained fo
... Show MoreAbstract
The Phenomenon of Extremism of Values (Maximum or Rare Value) an important phenomenon is the use of two techniques of sampling techniques to deal with this Extremism: the technique of the peak sample and the maximum annual sampling technique (AM) (Extreme values, Gumbel) for sample (AM) and (general Pareto, exponential) distribution of the POT sample. The cross-entropy algorithm was applied in two of its methods to the first estimate using the statistical order and the second using the statistical order and likelihood ratio. The third method is proposed by the researcher. The MSE comparison coefficient of the estimated parameters and the probability density function for each of the distributions were
... Show MoreIn this paper, we made comparison among different parametric ,nonparametric and semiparametric estimators for partial linear regression model users parametric represented by ols and nonparametric methods represented by cubic smoothing spline estimator and Nadaraya-Watson estimator, we study three nonparametric regression models and samples sizes n=40,60,100,variances used σ2=0.5,1,1.5 the results for the first model show that N.W estimator for partial linear regression model(PLM) is the best followed the cubic smoothing spline estimator for (PLM),and the results of the second and the third model show that the best estimator is C.S.S.followed by N.W estimator for (PLM) ,the
... Show MoreThe process of evaluating data (age and the gender structure) is one of the important factors that help any country to draw plans and programs for the future. Discussed the errors in population data for the census of Iraqi population of 1997. targeted correct and revised to serve the purposes of planning. which will be smoothing the population databy using nonparametric regression estimator (Nadaraya-Watson estimator) This estimator depends on bandwidth (h) which can be calculate it by two ways of using Bayesian method, the first when observations distribution is Lognormal Kernel and the second is when observations distribution is Normal Kernel
... Show MoreIn this study, we made a comparison between LASSO & SCAD methods, which are two special methods for dealing with models in partial quantile regression. (Nadaraya & Watson Kernel) was used to estimate the non-parametric part ;in addition, the rule of thumb method was used to estimate the smoothing bandwidth (h). Penalty methods proved to be efficient in estimating the regression coefficients, but the SCAD method according to the mean squared error criterion (MSE) was the best after estimating the missing data using the mean imputation method
Image compression plays an important role in reducing the size and storage of data while increasing the speed of its transmission through the Internet significantly. Image compression is an important research topic for several decades and recently, with the great successes achieved by deep learning in many areas of image processing, especially image compression, and its use is increasing Gradually in the field of image compression. The deep learning neural network has also achieved great success in the field of processing and compressing various images of different sizes. In this paper, we present a structure for image compression based on the use of a Convolutional AutoEncoder (CAE) for deep learning, inspired by the diversity of human eye
... Show More