The significance fore supra topological spaces as a subject of study cannot be overstated, as they represent a broader framework than traditional topological spaces. Numerous scholars have proposed extension to supra open sets, including supra semi open sets, supra per open and others. In this research, a notion for ⱨ-supra open created within the generalizations of the supra topology of sets. Our investigation involves harnessing this style of sets to introduce modern notions in these spaces, specifically supra ⱨ - interior, supra ⱨ - closure, supra ⱨ - limit points, supra ⱨ - boundary points and supra ⱨ - exterior of sets. It has been examining the relationship with supra open. The research was also enriched with many of characteristics of each concept. Building upon this set classification, we introduced several kinds of maps like supra ⱨ - continuous, supra ⱨ - open, supra ⱨ - tentative, supra ⱨ -globally and supra ⱨ - homeomorphism. Additionally, we have proven a collection of useful relationships for the aforementioned of functions. Furthermore, the research was enhanced with illustrative and refuting examples.
In this work the concept of semi-generalized regular topological space was introduced and studied via semi generalized open sets. Many properties and results was investigated and studied, also it was shown that the quotient space of semi-generalized regular topological space is not, in general semi-generalizedspace.
Grabisch and Labreuche have recently proposed a generalization of capacities, called the bi-capacities. Recently, a new approach for studying bi-capacities through introducing a notion of ternary-element sets proposed by the author. In this paper, we propose many results such as bipolar Mobius transform, importance index, and interaction index of bi-capacities based on our approach.
This paper is devoted to the discussion the relationships of connectedness between some types of graphs (resp. digraph) and Gm-closure spaces by using graph closure operators.
Systematic Reviews in Pharmacy is a monthly Peer-review open access Journal,different scientists involved in Pharmaceutical research and development
Discrete logarithms are applied in many cryptographic problems . For instance , in public key . and for construction of sets with disti nct sums of k-clcments. The purpose o r this paper
is to modify the method ol' informationl1·iding using discrete logarithms , introduce new properties of St - sets , uscdthe direct product of groups to construct cyclic group and finally, present modified method for knapsack &
... Show MoreIn this paper, some basic notions and facts in the b-modular space similar to those in the modular spaces as a type of generalization are given. For example, concepts of convergence, best approximate, uniformly convexity etc. And then, two results about relation between semi compactness and approximation are proved which are used to prove a theorem on the existence of best approximation for a semi-compact subset of b-modular space.
The main purpose of this paper is to study feebly open and feebly closed mappings and we proved several results about that by using some concepts of topological feebly open and feebly closed sets , semi open (- closed ) set , gs-(sg-) closed set and composition of mappings.
Most real-life situations need some sort of approximation to fit mathematical models. The beauty of using topology in approximation is achieved via obtaining approximation for qualitative subgraphs without coding or using assumption. The aim of this paper is to apply near concepts in the -closure approximation spaces. The basic notions of near approximations are introduced and sufficiently illustrated. Near approximations are considered as mathematical tools to modify the approximations of graphs. Moreover, proved results, examples, and counterexamples are provided.
In this paper, we will focus to one of the recent applications of PU-algebras in the coding theory, namely the construction of codes by soft sets PU-valued functions. First, we shall introduce the notion of soft sets PU-valued functions on PU-algebra and investigate some of its related properties.Moreover, the codes generated by a soft sets PU-valued function are constructed and several examples are given. Furthermore, example with graphs of binary block code constructed from a soft sets PU-valued function is constructed.