An optimization study was conducted to determine the optimal operating pressure for the oil and gas separation vessels in the West Qurna 1 oil field. The ASPEN HYSYS software was employed as an effective tool to analyze the optimal pressure for the second and third-stage separators while maintaining a constant operating pressure for the first stage. The analysis involved 10 cases for each separation stage, revealing that the operating pressure of 3.0 Kg/cm2 and 0.7 Kg/cm2 for the second and third stages, respectively, yielded the optimum oil recovery to the flow tank. These pressure set points were selected based on serval factors including API gravity, oil formation volume factor, and gas-oil ratio from the flow tank. To improve the optimization process for separator sizes, a Python code was developed, combining the Newton Raphson Method (NRM), and Lang Cost Method (LCM), with Retention time calculations. In this process, total purchase cost was the objective function. Two design scenarios were examined, corresponding to throughput of 105,000 KBPD and 52,500 KBPD respectively. In the first scenario, the NRM, LCM, and Retention time methods within the Python code were employed, resulting in a three-stage separation train with costs of $1,534,630 for the first stage, $1,438,239 for the second stage and $1,025,978 for the third stage. The Total purchase cost for the separation train was $3,988,847. In the second scenario, utilizing two separators for each stage to process the same throughput resulted in lower costs, totaling $823,851.5 per stage and a total purchase cost of $2,471,553. These costs were calculated using the Lang Cost method, which included the material cost and utilized a Lang factor of 3.1 to determine the total purchase cost after adding shipping, installation, commissioning, and start-up expenses. The first scenario resulted in larger separators and higher costs, while the second scenario showed lower costs, although it required two vessels per stage to process the same throughput. It was observed that the separator efficiencies were influenced by retention time, with increased retention time leading to improved separator efficiency.
The results of the historical review of social and political realities in general show that the practical and procedural applications of social engineering as a particular activity primarily of the social and political characteristics of man and society emerged in modern Western societies before appearing in other societies, These results also show that the emergence of these practical reasons and their applications in the West has also seen the emergence of modern theoretical foundations there, which seems to be the usual and usual context everywhere and in most or not all areas of life. Since the social and political dimensions are intertwined in human life and are in full, comprehensive and lasting harmony, interest in this geometry h
... Show MoreIn the recent decade, injection of nanoparticles (NPs) into underground formation as liquid nanodispersions has been suggested as a smart alternative for conventional methods in tertiary oil recovery projects from mature oil reservoirs. Such reservoirs, however, are strong candidates for carbon geo-sequestration (CGS) projects, and the presence of nanoparticles (NPs) after nanofluid-flooding can add more complexity to carbon geo-storage projects. Despite studies investigating CO2 injection and nanofluid-flooding for EOR projects, no information was reported about the potential synergistic effects of CO2 and NPs on enhanced oil recovery (EOR) and CGS concerning the interfacial tension (γ) of CO2-oil system. This study thus extensively inves
... Show MoreThis paper discusses the method for determining the permeability values of Tertiary Reservoir in Ajeel field (Jeribe, dhiban, Euphrates) units and this study is very important to determine the permeability values that it is needed to detect the economic value of oil in Tertiary Formation. This study based on core data from nine wells and log data from twelve wells. The wells are AJ-1, AJ-4, AJ-6, AJ-7, AJ-10, AJ-12, AJ-13, AJ-14, AJ-15, AJ-22, AJ-25, and AJ-54, but we have chosen three wells (AJ4, AJ6, and AJ10) to study in this paper. Three methods are used for this work and this study indicates that one of the best way of obtaining permeability is the Neural network method because the values of permeability obtained be
... Show MoreRotating cylinder electrode (RCE) is used . in weight loss technique , the salinity is 200000 p.p.m, temperatures are (30,5060,7080Co) . the velocity of (RCE) are (500,1500,3000 r.p.m). the water cut (30% , 50%). The corrosion rate of carbon steel increase with increasing rotating cylinder velocity. In single phase flow, an increase im rotational velocity from 500 to 1500 r.p.m, the corrosion rate increase from 6.88258 mm/y to 10.11563 mm/y respectively.
In multiphase flow, an increase in (RCE) from 500 to 1500 r.p.m leads to increase in corrosion rate from 0.786153 to 0.910327 mm/y respectively. Increasing brine concentration leads to increase in corrosion rate at water cut 30%.
The Middle Cenomanian-Early Turonian Mishrif Formation includes important carbonate reservoirs in Iraq and some other surrounding countries due to their high reservoir quality and wide geological extension. The 2D models of this study for facies, effective porosity and water saturation indicate the vertical and lateral heterogeneity of the Mishrif Formation reservoir properties in the Majnoon oil field. Construction of 2D reservoir model of the Mishrif Formation to explain the distribution of facies and petrophysical properties (effective porosity and water saturation) by using RockWorks software. The increase of effective porosity is attributed to the presence of shoal facies.The high water saturation is attributed to the existence of rest
... Show MoreThe reservoir units of Mishrif Formation in Majnoon oil field were studied by using available wireline logs (gamma ray, porosity and resistivity) and facies that derived from core and cutting samples for three wells including Mj-1, Mj-15, and Mj-20. The reservoir properties were determined and interpreted by using IP software. The results showed that unit D have the best reservoir properties due to high effective porosity, low water saturation and very low volume of shale. Furthermore, a large part of this unit was deposited in shoal environment. The other reservoir units are then graded in reservoir properties including units B, A, F & E respectively, except unit C, which is considered as a cap unit, because it consists of rest
... Show MoreThe study includes building a 3-D geological model, which involves get the Petrophysical properties as (porosity, permeability and water saturation). Effective Porosity, water saturation results from log interpretation process and permeability from special correlation using core data and log data. Clay volume can be calculated by six ways using IP software v3.5 the best way was by using gamma Ray. Also, Water Resistivity, flushed zone saturation and bulk volume analysis determined through geological study. Lithology determined in several ways using M-N matrix Identification, Density-Neutron and Sonic-Neutron cross plots. The cut off values are determined by Using EHC (Equivalent Hydra
Asphaltene is a component class that may precipitate from petroleum as a highly viscous and sticky material that is likely to cause deposition problems in a reservoir, in production well, transportation, and in process plants. It is more important to locate the asphaltene precipitation conditions (precipitation pressure and temperature) before the occurring problem of asphaltene deposition to prevent it and eliminate the burden of high treatment costs of this problem if it happens. There are different models which are used in this flow assurance problem (asphaltene precipitation and deposition problem) and these models depend on experimental testing of asphaltene properties. In this study, the used model was equation of
... Show More