An optimization study was conducted to determine the optimal operating pressure for the oil and gas separation vessels in the West Qurna 1 oil field. The ASPEN HYSYS software was employed as an effective tool to analyze the optimal pressure for the second and third-stage separators while maintaining a constant operating pressure for the first stage. The analysis involved 10 cases for each separation stage, revealing that the operating pressure of 3.0 Kg/cm2 and 0.7 Kg/cm2 for the second and third stages, respectively, yielded the optimum oil recovery to the flow tank. These pressure set points were selected based on serval factors including API gravity, oil formation volume factor, and gas-oil ratio from the flow tank. To improve the optimization process for separator sizes, a Python code was developed, combining the Newton Raphson Method (NRM), and Lang Cost Method (LCM), with Retention time calculations. In this process, total purchase cost was the objective function. Two design scenarios were examined, corresponding to throughput of 105,000 KBPD and 52,500 KBPD respectively. In the first scenario, the NRM, LCM, and Retention time methods within the Python code were employed, resulting in a three-stage separation train with costs of $1,534,630 for the first stage, $1,438,239 for the second stage and $1,025,978 for the third stage. The Total purchase cost for the separation train was $3,988,847. In the second scenario, utilizing two separators for each stage to process the same throughput resulted in lower costs, totaling $823,851.5 per stage and a total purchase cost of $2,471,553. These costs were calculated using the Lang Cost method, which included the material cost and utilized a Lang factor of 3.1 to determine the total purchase cost after adding shipping, installation, commissioning, and start-up expenses. The first scenario resulted in larger separators and higher costs, while the second scenario showed lower costs, although it required two vessels per stage to process the same throughput. It was observed that the separator efficiencies were influenced by retention time, with increased retention time leading to improved separator efficiency.
In this work, measurements of activity concentration of naturally occurring radioactive materials (NORM) isotopes and their related hazard indices for several materials such as crude oil, sludge and water in Ahdeb oil fields in Waste governorate using high pure germanium coaxial detection technique. The average values for crude oil samples were174.72Bq/l, 43.46Bq/l, 355.07Bq/l, 264.21Bq/l, 122.52nGy/h, 0.7138, 1.1861, 0.601 mSv/y, 0.1503mSv/y and 1.8361 for Ra-226, Ac-228, K-40, Ra eq, D, H-external and H-internal respectively. According to the results; the ratio between 238U to 232Th was 4, which represents the natural ratio in the crust earth; therefore, one can be strongly suggested that the geo-stricture of the
... Show MoreAbstract
The critical success factors of the means of the most modern in determining the main directions for organizations to achieve competitive advantage. and can be a critical success factors in organizations that overlap in the functional areas of the organization. that successful organizations use these factors to get to the uniqueness and distinction. as the entrance of critical success factors with the capacity Evaluative phase correction because discovery increases the perception of managers of what is important to the organization and using them to get to the Strategic Entrepreneurship. as it begins in terms of permanence of success and
... Show MoreConstructing a fine 3D geomodel for complex giant reservoir is a crucial task for hydrocarbon volume assessment and guiding for optimal development. The case under study is Mishrif reservoir of Halfaya oil field, which is an Iraqi giant carbonate reservoir. Mishrif mainly consists of limestone rocks which belong to Late Cenomanian age. The average gross thickness of formation is about 400m. In this paper, a high-resolution 3D geological model has been built using Petrel software that can be utilized as input for dynamic simulation. The model is constructed based on geological, geophysical, pertophysical and engineering data from about 60 available wells to characterize the structural, stratigraphic, and properties distri
... Show MoreConstructing a fine 3D geomodel for complex giant reservoir is a crucial task for hydrocarbon volume assessment and guiding for optimal development. The case under study is Mishrif reservoir of Halfaya oil field, which is an Iraqi giant carbonate reservoir. Mishrif mainly consists of limestone rocks which belong to Late Cenomanian age. The average gross thickness of formation is about 400m. In this paper, a high-resolution 3D geological model has been built using Petrel software that can be utilized as input for dynamic simulation. The model is constructed based on geological, geophysical, pertophysical and engineering data from about 60 available wells to characterize the structural, stratigraphic, and properties distribution along
... Show MoreAbstract :
In view of the fact that high blood pressure is one of the serious human diseases that a person can get without having to feel them, which is caused by many reasons therefore it became necessary to do research in this subject and to express these many factors by specific causes through studying it using (factor analysis).
So the researcher got to the five factors that explains only 71% of the total variation in this phenomenon is the subject of the research, where ((overweight)) and ((alcohol in abundance)) and ((smoking)) and ((lack of exercise)) are the reasons that influential the most in the incidence of this disease.
Two oil wells were tested to find the abnormal pressure zones using sonic log technique. We found that well Abu-Jir-3 and Abu-Jir-5 had an abnormal pressure zones from depth 4340 to 4520 feet and 4200 to 4600 feet, respectively. The maximum difference between obtained results and the field measured results did not exceed 2.4%.
In this paper, the formation pressures were expressed in terms of pressure gradient which sometimes reached up to twice the normal pressure gradient.
Drilling and developing such formations were dangerous and expensive.
The plotted figures showed a clear derivation from the normal trend which confirmed the existence of abnormal pressure zones.
The downhole flow profiles of the wells with single production tubes and mixed flow from more than one layer can be complicated, making it challenging to obtain the average pressure of each layer independently. Production log data can be used to monitor the impacts of pressure depletion over time and to determine average pressure with the use of Selective Inflow Performance (SIP). The SIP technique provides a method of determining the steady state of inflow relationship for each individual layer. The well flows at different stabilized surface rates, and for each rate, a production log is run throughout the producing interval to record both downhole flow rates and flowing pressure. PVT data can be used to convert measured in-situ r
... Show MoreThe downhole flow profiles of the wells with single production tubes and mixed flow from more than one layer can be complicated, making it challenging to obtain the average pressure of each layer independently. Production log data can be used to monitor the impacts of pressure depletion over time and to determine average pressure with the use of Selective Inflow Performance (SIP). The SIP technique provides a method of determining the steady state of inflow relationship for each individual layer. The well flows at different stabilized surface rates, and for each rate, a production log is run throughout the producing interval to record both downhole flow rates and flowing pressure. PVT data can be used to convert measured in-situ rates
... Show MoreOne of the most important problems in the oil production process and when its continuous flow, is emulsified oil (w/o emulsion), which in turn causes many problems, from the production line to the extended pipelines that are then transported to the oil refining process. It was observed that the nanomaterial (SiO2) supported the separation process by adding it to the emulsion sample and showed a high separation rate with the demulsifiers (RB6000) and (sebamax) where the percentage of separation was greater than (90 and 80 )% respectively, and less than that when dealing with (Sodium dodecyl sulfate and Diethylene glycol), the percentage of separation was (60% and 50%) respectively.
The high proportion
... Show More