This study has three parts, the first one is the synthesis of a novel Schiff bases by the condensation of guanine or 9-[{2-hydroxyethoxy}methyl]-9H-guanine with variety aldehydes to yield four different bases as follows: (E)-2-((4-nitrobenzylidene)amino)-1,9-dihydro-6H-purin-6-one (S1), (E)-2-((4-methoxybenzylidene)amino)-1,9-dihydro-6H-purin-6-one (S2), (E)-2-((2-hydroxybenzylidene) amino)-9-((2-hydroxy ethoxy)methyl)-1,9-dihydro-6H-purin-6-one (S3), and (E)-2-(((9-((2-hydroxy ethoxy)methyl)-6-oxo-6,9-dihydro-1H-purin-2-yl)imino)methyl)benzoic acid (S4). Then, spectroscopic analyses such as Elemental Analysis, UV/VIS, Mass spectra, FTIR, 1H,13C-NMR were made to recognize these bases. In the second part, the ability of synthesized bases to undergo a charge transfer reaction was examined in an ethanolic solution at 28℃ with Iodine (I2) and 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) acceptors. The nonbonding interactions were studied using Benesi–Hildebrand method to estimate the stability parameters for all formed charge transfer complexes. The results of CT-energies and Gibbs free energies (ΔG˚) confirmed the stability of these complexes, and all complexes follow the Benesi–Hildebrand equation. The results showed that the DDQ-complexes have an affinity constant ranging from (916.6–24,400) mol−1.L higher than the affinity constant of I2-complexes which ranges from (428.5–7000) mol−1.L. Moreover, the KCT of S2 > S1 and KCT of S4 > S3 were as follows [1222.2 for S1-I2, 4333.3 for S1-DDQ, 2812.5 for S2-I2, 4800 for S2-DDQ] and [3809.5 for S3-I2, 12,200 for S3-DDQ, 7000 for S4-I2, 24,400 for S4-DDQ] due to the specific properties of each compound. The direct energy gap (Egdir) of each complex was also obtained by applying Tauc's method. Iodine complexes with S1, S2, S3, S4, as well as S1-DDQ displayed energy gaps equal to (5.14, 5.11, 4.61, 4.51, and 3.90) eV, respectively, and are likely to act as insulators. In contrast, the DDQ complexes of (S2/S3/S4) bases exhibited Egdir values at (2.85–2.24) electron volts which makes them suitable for semiconductor material usage. Finally, the third part of this work included a theoretical study using DFT/B3LYP/3-21G method to illustrate and prove the experimental findings, which were consistent with the theoretical results.
Let R be a commutative ring with identity 1 ¹ 0, and let M be a unitary left module over R. A submodule N of an R-module M is called essential, if whenever N ⋂ L = (0), then L = (0) for every submodule L of M. In this case, we write N ≤e M. An R-module M is called extending, if every submodule of M is an essential in a direct summand of M. A submodule N of an R-module M is called semi-essential (denoted by N ≤sem M), if N ∩ P ≠ (0) for each nonzero prime submodule P of M. The main purpose of this work is to determine and study two new concepts (up to our knowledge) which are St-closed submodules and semi-extending modules. St-closed submodules is contained properly in the class of closed submodules, where a submodule N of
... Show MoreIn this paper, we introduce a new concept named St-polyform modules, and show that the class of St-polyform modules is contained properly in the well-known classes; polyform, strongly essentially quasi-Dedekind and ?-nonsingular modules. Various properties of such modules are obtained. Another characterization of St-polyform module is given. An existence of St-polyform submodules in certain class of modules is considered. The relationships of St-polyform with some related concepts are investigated. Furthermore, we introduce other new classes which are; St-semisimple and ?-non St-singular modules, and we verify that the class of St-polyform modules lies between them.
Azo-Schiff base compounds (L1 and L2) have been synthesized from the reaction of m-hydroxy benzoic acid with 1,5-dimethyl-3-[2-(5-methyl-1H-indol-3-yl)-ethylimino]-2-phenyl-2,3- dihydro-1H-pyrazol-4-ylamine and with 3-[2-(1H-indol-3-yl)-ethylimino]-1,5-dimethyl-2-phenyl- 2,3-dihydro-1H-pyrazol-4-ylamine. The free ligands and their complexes were characterized based on elemental analysis, determination of metal, molar conductivity, (1H, 13C) NMR, UV–vis, FT-IR, mass spectra and thermal analysis (TGA). The molar conductance data revealed that all the complexes are non-electrolytes. The study of complex formation via molar ratio in DMF solution has been investigated and results were consistent to those found in the solid complexes with a rat
... Show MoreThis research includes the synthesis of some new N-Aroyl-N \ -Aryl thiourea derivatives namely: N-benzoyl-N \ -(p-aminophenyl) thiourea (STU1), N-benzoyl-N \ -(thiazole) thiourea (STU2), N-acetyl-N ` -(dibenzyl) thiourea (STU3). The series substituted thiourea derivatives were prepared from reaction of acids with thionyl chloride then treating the resulted with potassium thiocyanate to affored the corresponding N-Aroyl isothiocyanates which direct reaction with primary and secondary aryl amines, The purity of the synthesized compounds were checked by measuring the melting point and Thin Layer Chromatography (TLC) and their structure, were identified by spectral methods [FTIR,1H-NMR and 13C-NMR].These compounds were investigated as a
... Show Moresynthesis and characterization of New Bidentate schiff base Ligand Type(NO)Donor Atoms Derived from isatin and 3-Amino benzoic acid and Its complexes with Co(||),Cu(||),Cd(||)and Hg(||)Ions
In the present article, mixed ligand metal (II) complexes have been synthesized with Schiff base (1E, 5Z, 6E)-1,7 bis (4-hydroxy-3- methoxyphenyl)-5-(3-hydroxyphenyl) imino) hepta-1,6-dien-3-one derived from Curcumin and 3-aminophenol as primary ligand and L-dopa as a secondary ligand. The Schiff base act as bidentate and arrange to the metals through the azomethine (C=N) nitrogen and (C=O) oxygen atom. The mode of bonding of the Schiff base has been affirmed on the infrared by the UV-Visible, 1H, and 13C NMR spectroscopic techniques. The magnetic susceptibility and the UV-Vis data of the complexes propose octahedral geometry around the central metal ion. The information appears that the complexes have the structure of [L-M-(L-dopa)] system
... Show MoreNew mixed ligand complexes of New Schiff base 4,4'- ((naphthalen-1-ylimino) methylene) dibenzene-1,3-diol and 8-hydroxy quinoline: Synthesis, Spectral Characterization, Thermal studies and Biological Activities
A new efficient Two Derivative Runge-Kutta method (TDRK) of order five is developed for the numerical solution of the special first order ordinary differential equations (ODEs). The new method is derived using the property of First Same As Last (FSAL). We analyzed the stability of our method. The numerical results are presented to illustrate the efficiency of the new method in comparison with some well-known RK methods.