People’s ability to quickly convey their thoughts, or opinions, on various services or items has improved as Web 2.0 has evolved. This is to look at the public perceptions expressed in the reviews. Aspect-based sentiment analysis (ABSA) deemed to receive a set of texts (e.g., product reviews or online reviews) and identify the opinion-target (aspect) within each review. Contemporary aspect-based sentiment analysis systems, like the aspect categorization, rely predominantly on lexicon-based, or manually labelled seeds that is being incorporated into the topic models. And using either handcrafted rules or pre-labelled clues for performing implicit aspect detection. These constraints are restricted to a particular domain or language which is domain-dependent. In this work, we first propose a novel unsupervised probabilistic model Topic-seeds Latent Dirichlet Allocation (TSLDA) that leverages semantic regularities for the articulation of explicit aspect-categories. Then, based on the articulated categories, a distributed vector is used for the identification of implicit aspects. The experimental results show that our approach outperforms baseline methods for different domain-data with minimal configurations. Specifically, utilizing the RI measure, our proposed TSLDA outperformed multiple clustering and topic models by an average of 0.83% in diverse domain-data, and roughly 0.89% using the Precision metric for implicit aspect detection.
Risperidone is an atypical antipsychotic drug that is used for treating schizophrenia, bipolar mania, and autism. Risperidone rebalances dopamine and serotonin to improve thinking, mood, and behavior by working on dopamine and serotonin α2receptor antagonism. Risperidone has poor solubility and high permeability through the intestine, so it belongs to Biopharmaceutical Classification System (BCS) class II exhibits poor oral biopharmaceutical properties.
The aim of the present work was to improve solubility and dissolution of Risperidone by preparing nanosuspension using different stabilizers and different solvents in a method known as solvent-antisolvent precipitation method. Twenty-eight formulas were prepared
... Show MoreVision loss happens due to diabetic retinopathy (DR) in severe stages. Thus, an automatic detection method applied to diagnose DR in an earlier phase may help medical doctors to make better decisions. DR is considered one of the main risks, leading to blindness. Computer-Aided Diagnosis systems play an essential role in detecting features in fundus images. Fundus images may include blood vessels, exudates, micro-aneurysm, hemorrhages, and neovascularization. In this paper, our model combines automatic detection for the diabetic retinopathy classification with localization methods depending on weakly-supervised learning. The model has four stages; in stage one, various preprocessing techniques are app
The main purpose of this work is to introduce some types of fuzzy convergence sequences of operators defined on a standard fuzzy normed space (SFN-spaces) and investigate some properties and relationships between these concepts. Firstly, the definition of weak fuzzy convergence sequence in terms of fuzzy bounded linear functional is given. Then the notions of weakly and strongly fuzzy convergence sequences of operators are introduced and essential theorems related to these concepts are proved. In particular, if ( ) is a strongly fuzzy convergent sequence with a limit where linear operator from complete standard fuzzy normed space into a standard fuzzy normed space then belongs to the set of all fuzzy bounded linear operators
Optimizing system performance in dynamic and heterogeneous environments and the efficient management of computational tasks are crucial. This paper therefore looks at task scheduling and resource allocation algorithms in some depth. The work evaluates five algorithms: Genetic Algorithms (GA), Particle Swarm Optimization (PSO), Ant Colony Optimization (ACO), Firefly Algorithm (FA) and Simulated Annealing (SA) across various workloads achieved by varying the task-to-node ratio. The paper identifies Finish Time and Deadline as two key performance metrics for gauging the efficacy of an algorithm, and a comprehensive investigation of the behaviors of these algorithms across different workloads was carried out. Results from the experiment
... Show MoreThe process for preparing activated carbon (AC) made from tea residue was described in this paper. Investigated were the physicochemical characteristics and adsorption efficiency of the produced AC. Activation with potassium hydroxide (KOH) and carbonization at 350 °C are the two key steps in the manufacturing of AC. The activated carbon was used to adsorb Tetracycline (TC). Different parameters were studied at room temperature to show their effects on the adsorption efficiency of TC. These parameters are the initial concentration of adsorbate TC, solution acidity pH, time of adsorption, and adsorbent dosage. The prepared active carbon was characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microsc
... Show MoreIn this research two algorithms are applied, the first is Fuzzy C Means (FCM) algorithm and the second is hard K means (HKM) algorithm to know which of them is better than the others these two algorithms are applied on a set of data collected from the Ministry of Planning on the water turbidity of five areas in Baghdad to know which of these areas are less turbid in clear water to see which months during the year are less turbid in clear water in the specified area.