Preferred Language
Articles
/
2RjYf5cBVTCNdQwCh5hX
Study of matter density distributions, elastic charge form factors and size radii for halo 11Be, 19C and 11Li nuclei
...Show More Authors

In this work, the calculation of matter density distributions, elastic charge form factors and size radii for halo 11Be, 19C and 11Li nuclei are calculated. Each nuclide under study are divided into two parts; one for core part and the second for halo part. The core part are studied using harmonic-oscillator radial wave functions, while the halo part are studied using the radial wave functions of Woods-Saxon potential. A very good agreement are obtained with experimental data for matter density distributions and available size radii. Besides, the quadrupole moment for 11Li are generated.

Crossref
View Publication
Publication Date
Sun Feb 10 2019
Journal Name
Iraqi Journal Of Physics
Matter density distribution and longitudinal form factors for the ground and excited states of 17Ne exotic nucleus
...Show More Authors

The two-frequency shell model approach is used to calculate the
ground state matter density distribution and the corresponding root
mean square radii of the two-proton17Ne halo nucleus with the
assumption that the model space of 15O core nucleus differ from the
model space of extra two loosely bound valence protons. Two
different size parameters bcore and bhalo of the single particle wave
functions of the harmonic oscillator potential are used. The
calculations are carried out for different configurations of the outer
halo protons in 17Ne nucleus and the structure of this halo nucleus
shows that the dominant configuration when the two halo protons in
the 1d5/2 orbi

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Feb 22 2023
Journal Name
Iraqi Journal Of Science
The Effect of Short Range Correlation on The Nuclear Charge Density Distribution, Elastic and Inelastic Electron Scattering Coulomb Form Factors of 18O Nucleus
...Show More Authors

The effect of short range correlations on the inelastic longitudinal Coulomb form
factors for the lowest four excited 2+ states in 18O is analyzed. This effect (which
depends on the correlation parameter β) is inserted into the ground state charge
density distribution through the Jastrow type correlation function. The single particle
harmonic oscillator wave function is used with an oscillator size parameter b. The
parameters β and b are, considered as free parameters, adjusted for each excited state
separately so as to reproduce the experimental root mean square charge radius of
18O. The model space of 18O does not contribute to the transition charge density. As
a result, the inelastic Coulomb form factor of 18

... Show More
View Publication Preview PDF
Publication Date
Tue Dec 01 2009
Journal Name
Iraqi Journal Of Physics
The Calculation of the Charge Density Distributions and the Longitudinal Form Factors of 10 B Nucleus by Using the Occupation Numbers of the States
...Show More Authors

The charge density distributions of 10 B nucleus are calculated using the
harmonic oscillator wave functions. Elastic and inelastic electron scattering
longitudinal form factors have been calculated for the similar parity states of 10B
nucleus where a core of 4He is assumed and the remaining particles are
distributed over 3/ 2 1p and 1/ 2 1p orbits which form the model space.
Core-polarization effects are taken into account. Core-polarization effects are
calculated by using Tassie model and gives good agreement with the measured
data.

View Publication Preview PDF
Publication Date
Sun Mar 01 2020
Journal Name
International Journal Of Modern Physics E
Investigation of halo structure of neutron rich 14B, 15C, 19C and 22N nuclei in the two body model
...Show More Authors

The two body model of (Core+n) within the radial wave functions of the cosh potential has been used to investigate the ground state features such as the proton, neutron and matter densities, the root mean square (RMS) nuclear proton, neutron, charge and mass radii of unstable neutron-rich 14B, 15C, 19C and 22N nuclei. The calculated results show that the two body model with the radial wave functions of the cosh potential succeeds in reproducing neutron halo in these nuclei.

View Publication
Scopus (14)
Crossref (10)
Scopus Clarivate Crossref
Publication Date
Sun Feb 17 2019
Journal Name
Iraqi Journal Of Physics
Nucleon momentum distributions and elastic electron scattering form factors for 58Ni, 60Ni, 62Ni, and 64Ni isotopes using the framework of coherent fluctuation model
...Show More Authors

The nucleon momentum distributions (NMD) and elastic electron scattering form factors of the ground state for some 1f-2p-shell nuclei, such as 58Ni, 60Ni, 62Ni, and 64Ni
isotopes have been calculated in the framework of the coherent fluctuation model (CFM) and expressed in terms of the weight function lf(x)l. The weight function (fluctuation function) has been related to the nucleon density distribution (NDD) of the nuclei and determined from the theory and experiment. The NDD is derived from a simple method based on the use of the single particle wave functions of the harmonic oscillator potential and the occupation numbers of the states. The feature of the l

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Oct 01 2009
Journal Name
Iraqi Journal Of Physics
Calculation of the Longitudinal Electron Scattering Form Factors for the 2s-1d Shell Nuclei
...Show More Authors

Inelastic longitudinal electron scattering form factors have been calculated for isoscaler transition
T = 0 of the (0+ ®2+ ) and (0+ ®4+ ) transitions for the 20Ne ,24Mg and 28Si nuclei. Model
space wave function defined by the orbits 1d5 2 ,2s1 2 and 1d3 2 can not give reasonable result for
the form factor. The core-polarization effects are evaluated by adopting the shape of the Tassie-
Model, together with the calculated ground Charge Density Distribution CDD for the low mass 2s-1d
shell nuclei using the occupation number of the states where the sub-shell 2s is included with an
occupation number of protons (a ) .

View Publication Preview PDF
Publication Date
Sat Jan 01 2011
Journal Name
Iraqi Journal Of Physics
Calculation of the longitudinal electron scattering form factors for the 2s-1d shell nuclei
...Show More Authors

An Expression for the transition charge density is investigated
where the deformation in nuclear collective modes is taken into
consideration besides the shell model transition density. The
inelastic longitudinal C2 and C4 form factors are calculated using
this transition charge density for the Ne Mg 20 24 , , Si 28 and S 32
nuclei. In this work, the core polarization transition density is
evaluated by adopting the shape of Tassie model togther with the
derived form of the ground state two-body charge density
distributions (2BCDD's). It is noticed that the core polarization
effects which represent the collective modes are essential in
obtaining a remarkable agreement between the calculated inelastic
longi

... Show More
View Publication Preview PDF
Publication Date
Sat Feb 15 2025
Journal Name
Iraqi Journal Of Science
Study of Longitudinal Electron Scattering Form Factors with the Radial Wave functions of Transformed Harmonic-Oscillator for some Light Nuclei
...Show More Authors

The wave functions of converted harmonic-oscillator in local scaling transformations are employed to evaluate charge distributions and elastic charge electron scattering form structures for 6,7Li, 9Be, 14,15N and 16O nuclei. The nuclear shell-model was fulfilled using Warburton-Brown  psd-shell (WBP) interaction with  truncation in  model space. Very good agreements with the experimental data were obtained for the aforementioned quantities. 

View Publication
Scopus Crossref
Publication Date
Sun Nov 01 2020
Journal Name
Physics Of Atomic Nuclei
Study of the Halo Structure for Some Light Neutron-Rich Nuclei Using the Cosh Potential
...Show More Authors

The radial wave functions of the cosh potential within the three-body model of (Core+ 2n) have been employed to investigate the ground state properties such as the proton, neutron and matter densities and the associated rms radii of neutron-rich 6He, 11Li, 14Be, and 17B exotic nuclei. The density distributions of the core and two valence (halo) neutrons are described by the radial wave functions of the cosh potential. The obtained results provide the halo structure of the above exotic nuclei. Elastic electron scattering form factors of these halo nuclei are studied by the plane-wave Born approximation.

View Publication
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Tue Sep 01 2020
Journal Name
Iraqi Journal Of Physics
Study of the nuclear structure of halo nuclei 23O and 24F using the two-body model
...Show More Authors

The nuclear structure included the matter, proton and neutron densities of the ground state, the nuclear root-mean-square (rms) radii and elastic form factors of one neutron 23O and 24F halo nuclei have been studied by the two body model of  within the harmonic oscillator (HO) and Woods-Saxon (WS) radial wave functions. The calculated results show that the two body model within the HO and WS radial wave functions succeed in reproducing neutron halo in these exotic nuclei. Moreover, the Glauber model at high energy has been used to calculated the rms radii and reaction cross section of these nuclei.

View Publication Preview PDF
Crossref (2)
Crossref