In this work, the calculation of matter density distributions, elastic charge form factors and size radii for halo 11Be, 19C and 11Li nuclei are calculated. Each nuclide under study are divided into two parts; one for core part and the second for halo part. The core part are studied using harmonic-oscillator radial wave functions, while the halo part are studied using the radial wave functions of Woods-Saxon potential. A very good agreement are obtained with experimental data for matter density distributions and available size radii. Besides, the quadrupole moment for 11Li are generated.
paper
An effective two-body density operator for point nucleon system folded with two-body correlation functions, which take account of the effect of the strong short range repulsion and the strong tensor force in the nucleon-nucleon forces, is produced and used to derive an explicit form for ground state two-body charge density distributions (2BCDD's) and elastic electron scattering form factors F (q) for 19F, 27Al and 25Mg nuclei. It is found that the inclusion of the two-body short range correlations (SRC) has the feature of reducing the central part of the 2BCDD's significantly and increasing the tail part of them slightly, i.e. it tends to increase the probability of transferring the protons from the central region of the nucleus towards
... Show MoreAn effective two-body density operator for point nucleon system
folded with the tenser force correlations( TC's), is produced and used
to derive an explicit form for ground state two-body charge density
distributions (2BCDD's) applicable for 25Mg, 27Al and 29Si nuclei. It is
found that the inclusion of the two-body TC's has the feature of
increasing the central part of the 2BCDD's significantly and reducing
the tail part of them slightly, i.e. it tends to increase the probability of
transferring the protons from the surface of the nucleus towards its
centeral region and consequently makes the nucleus to be more rigid
than the case when there is no TC's and also leads to decrease the
1/ 2
r 2 of the nucleu
The harmonic oscillator (HO) and Gaussian (GS) wave functions within the binary cluster model (BCM) have been employ to investigate the ground state neutron, proton and matter densities as well as the elastic form factors of two- neutron 6He and 16C halo nuclei. The long tail is a property that is clearly revealed in the density of the neutrons since it is found in halo orbits. The existence of a long tail in the neutron density distributions of 6He and 16C indicating that these nuclei have a neutron halo structure. Moreover, the matter rms radii and the reaction cross section (𝜎𝑅 ) of these nuclei have been calculated using the Glauber model.
The radial wave functions of the Bear–Hodgson potential have been used to study the ground state features such as the proton, neutron and matter densities and the as- sociated rms radii of two neutrons halo 6He, 11Li, 14Be and 17B nuclei. These halo nuclei are treated as a three-body system composed of core and outer two-neutron (Core + n + n). The radial wave functions of the Bear–Hodgson potential are used to describe the core and halo density distributions. The interaction of core-neutron takes the Bear–Hodgson potential form. The outer two neutrons of 6He and 11Li interact by the realistic interaction REWIL whereas those of 14Be and 17B interact by the realistic interaction of HASP. The obtained results show that this model succee
... Show MoreIn this work, the nuclear density distributions, size radii and elastic electron scattering form factors are calculated for proton-rich 8B, 17F, 17Ne, 23Al and 27P nuclei using the radial wave functions of Woods-Saxon potential. The parameters of such potential for nuclei under study are generated so as to reproduce the experimentally available size radii and binding energies of the last nucleons on the Fermi surface.