Inferential methods of statistical distributions have reached a high level of interest in recent years. However, in real life, data can follow more than one distribution, and then mixture models must be fitted to such data. One of which is a finite mixture of Rayleigh distribution that is widely used in modelling lifetime data in many fields, such as medicine, agriculture and engineering. In this paper, we proposed a new Bayesian frameworks by assuming conjugate priors for the square of the component parameters. We used this prior distribution in the classical Bayesian, Metropolis-hasting (MH) and Gibbs sampler methods. The performance of these techniques were assessed by conducting data which was generated from two and three-component mixture of the Rayleigh distribution according to several scenarios and comparing the results of the scenarios by calculating the mean of classification successful rate (MCSR) and the mean of mean square error(MMSE). The results showed that Gibbs sampler algorithm yields a better computation results than the others in terms of MMSE and MCSR.
Background: An oily calcium hydroxide formulation proved over the last years to be highly efficient in promoting bone regeneration in closed defects as periapical lesions, cysts, or post-extraction defects. The aim of the present study is the assessment of the outcome of treatment of deep intrabony periodontal defects with an Open Flap Debridement) (OFD) + combination of {(30% Hydroxyapatite HAp + 70% ?-Tricalcium Phosphate granules mixed with an Oily Calcium Hydroxide Suspension (OCHS )} and compare the results with {(OFD) alone)}. The combination of OCHS& TCP was used in humans with a sort of positive results, and more conduction of studies was recommended. Material and method: The sample of this study composed of sixteen patients;
... Show MoreThe theory of probabilistic programming may be conceived in several different ways. As a method of programming it analyses the implications of probabilistic variations in the parameter space of linear or nonlinear programming model. The generating mechanism of such probabilistic variations in the economic models may be due to incomplete information about changes in demand, production and technology, specification errors about the econometric relations presumed for different economic agents, uncertainty of various sorts and the consequences of imperfect aggregation or disaggregating of economic variables. In this Research we discuss the probabilistic programming problem when the coefficient bi is random variable
... Show MoreThe dimensions of bubbles were measured in a stirrer tank electrochemical reactor, where the analysis of the bubble size distribution has a substantial impact on the flow dynamics. The high-speed camera and image processing methods were used to obtain a reliable photo. The influence of varied air flow rates (0.3; 0.5; 1 l/min) on BSD was thoroughly investigated. Two types of distributors (cubic and circular) were examined, and the impact of various airflow rates on BSD was investigated in detail. The results showed that the bubbles for the two distributors were between 0.5 and 4.5 mm. For both distributors at each airflow, the Sauter mean diameter for the bubbles was calculated. According to the results, as the flow rate raised, the bubb
... Show MoreTwo dimensional meso-scale concrete modeling was used in finite element analysis of plain concrete beam subjected to bending. The plane stress 4-noded quadrilateral elements were utilized to model coarse aggregate, cement mortar. The effect of aggregate fraction distribution, and pores percent of the total area – resulting from air voids entrapped in concrete during placement on the behavior of plain concrete beam in flexural was detected. Aggregate size fractions were randomly distributed across the profile area of the beam. Extended Finite Element Method (XFEM) was employed to treat the discontinuities problems result from double phases of concrete and cracking that faced during the finite element analysis of concrete beam. Crac
... Show MoreIn this paper, a least squares group finite element method for solving coupled Burgers' problem in 2-D is presented. A fully discrete formulation of least squares finite element method is analyzed, the backward-Euler scheme for the time variable is considered, the discretization with respect to space variable is applied as biquadratic quadrangular elements with nine nodes for each element. The continuity, ellipticity, stability condition and error estimate of least squares group finite element method are proved. The theoretical results show that the error estimate of this method is . The numerical results are compared with the exact solution and other available literature when the convection-dominated case to illustrate the effic
... Show MoreFinite Element Approach is employed in this research work to solve the governing differential equations related to seepage via its foundation's dam structure. The primary focus for this reason is the discretization of domain into finite elements through the placement of imaginary nodal points and the discretization of governing equations into an equation system; An equation for each nodal point or part, and unknown variables are solved. The SEEP / W software (program) is a sub-program of the Geo-Studio software, which is used by porous soil media to compensate for the problems of seepage. To achieve the research goals, a study was carried out on Hemrin dam, which located in the Diyala River 100 km northeast of Baghdad, Iraq. Thus, o
... Show MoreThis paper proposes a novel finite-time generalized proportional integral observer (FTGPIO) based a sliding mode control (SMC) scheme for the tracking control problem of high order uncertain systems subject to fast time-varying disturbances. For this purpose, the construction of the controller consists of two consecutive steps. First, the novel FTGPIO is designed to observe unmeasurable plant dynamics states and disturbance with its higher time derivatives in finite time rather than infinite time as in the standard GPIO. In the FTGPO estimator, the finite time convergence rate of estimations is well achieved, whereas the convergence rate of estimations by classical GPIO is asymptotic and slow. Secondly, on the basis of the finite and fast e
... Show MoreSeepage occurs under or inside structures or in the place, where they come into contact with the sides under the influence of pressure caused by the difference in water level in the structure U / S and D / S. This paper is designed to model seepage analysis for Kongele (an earth dam) due to its importance in providing water for agricultural projects and supporting Tourism sector. For this purpose, analysis was carried out to study seepage through the dam under various conditions. Using the finite element method by computer program (Geo-Studio) the dam was analysed in its actual design using the SEEP / W 2018 program. Several analyses were performed to study the seepage across Kongele
In this research , we study the inverse Gompertz distribution (IG) and estimate the survival function of the distribution , and the survival function was evaluated using three methods (the Maximum likelihood, least squares, and percentiles estimators) and choosing the best method estimation ,as it was found that the best method for estimating the survival function is the squares-least method because it has the lowest IMSE and for all sample sizes