Preferred Language
Articles
/
2ReSfY8BVTCNdQwC1nmF
Semi-Small Compressible Modules and Semi-Small Retractable Modules
...Show More Authors

Let  be a commutative ring with 1 and  be left unitary  . In this paper we introduced and studied concept of semi-small compressible module (a     is said to be semi-small compressible module if  can be embedded in every nonzero semi-small submodule of . Equivalently,  is  semi-small compressible module if there exists a monomorphism  , ,     is said to be semi-small retractable module if  , for every non-zero  semi-small sub module in . Equivalently,  is semi-small retractable if there exists a homomorphism  whenever  .     In this paper we introduce and study the concept of semi-small compressible and semi-small retractable s as a generalization of compressible  and retractable  respectively and give some of their advantages characterizations and examples.  

Crossref
Publication Date
Sat Jan 01 2022
Journal Name
International Journal Of Early Childhood Special Education (int-jecse)
(𝝁∗- Essential Lifting Modules)
...Show More Authors

Publication Date
Fri May 01 2020
Journal Name
Journal Of Physics: Conference Series
On J–Lifting Modules
...Show More Authors
Abstract<p>Let R be a ring with identity and M is a unitary left R–module. M is called J–lifting module if for every submodule N of M, there exists a submodule K of N such that <inline-formula> <tex-math><?CDATA ${\rm{M}} = {\rm{K}} \oplus \mathop {\rm{K}}\limits^\prime,\>\mathop {\rm{K}}\limits^\prime \subseteq {\rm{M}}$?></tex-math> <math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="block" overflow="scroll"> <mrow> <mi mathvariant="normal">M</mi> <mo>=</mo> <mi mathvariant="normal">K</mi></mrow></math></inline-formula></p> ... Show More
View Publication
Scopus (4)
Scopus Crossref
Publication Date
Sat Jun 27 2020
Journal Name
Iraqi Journal Of Science
Quasi J-Regular Modules
...Show More Authors

Throughout this note, R is commutative ring with identity and M is a unitary R-module. In this paper, we introduce the concept of quasi J-  submodules as a     –  and give some of its basic properties. Using this concept, we define the class of quasi J-regular modules, where an R-module     J- module if every submodule of  is quasi J-pure. Many results about this concept

View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Thu Feb 28 2019
Journal Name
Iraqi Journal Of Science
On µ-lifting Modules
...Show More Authors

Let R be a ring with identity and let M be a left R-module. M is called µ-lifting modulei f for every sub module A of M, There exists a direct summand D of M such that M = D D', for some sub module D' of M such that AD and A D'<<µ D'. The aim of this paper is to introduce properties of µ-lifting modules. Especially, we give characterizations of µ-lifting modules. On the other hand, the notion of amply µ-supplemented iis studied as a generalization of amply supplemented modules, we show that if M is amply µ-supplemented such that every µ-supplement sub module of M

... Show More
View Publication Preview PDF
Publication Date
Fri Apr 30 2021
Journal Name
Iraqi Journal Of Science
S-K-nonsingular Modules
...Show More Authors

In this paper, we introduce a type of modules, namely S-K-nonsingular modules, which is a generalization of K-nonsingular modules. A comprehensive study of these classes of modules is given.

View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Sat Dec 30 2023
Journal Name
Iraqi Journal Of Science
On Purely –Extending Modules
...Show More Authors

In this note we consider a generalization of the notion of a purely extending
modules, defined using y– closed submodules.
We show that a ring R is purely y – extending if and only if every cyclic nonsingular
R – module is flat. In particular every nonsingular purely y extending ring is
principal flat.

View Publication Preview PDF
Publication Date
Fri Dec 30 2022
Journal Name
Iraqi Journal Of Science
F-Approximately Regular Modules
...Show More Authors

We introduce in this paper the concept of an approximately pure submodule as a     generalization of a pure submodule, that is defined by Anderson and Fuller. If every submodule of an R-module  is approximately pure, then  is called F-approximately regular. Further, many results about this concept are given.

View Publication Preview PDF
Crossref (1)
Scopus Crossref
Publication Date
Wed May 10 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Purely co-Hopfian Modules
...Show More Authors

  Let R be an associative ring with identity and M a non – zero unitary R-module.In this paper we introduce the definition of purely co-Hopfian module, where an R-module M is said to be purely co-Hopfian if for any monomorphism f Ë› End (M), Imf is pure in M and we give  some properties of this kind of modules.

View Publication Preview PDF
Publication Date
Mon Jul 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
⊕-s-extending modules
...Show More Authors

     The -s-extending modules will be purpose of this paper, a module M  is -s-extending if each submodule in M is essential in submodule has a supplement that is direct summand. Initially, we give relation between this concept with weakly supplement extending modules and -supplemented modules. In fact, we gives the following implications:

Lifting modules   -supplemented modules   -s-extending modules  weakly supplement extending modules.

It is also we give examples show that, the converse of this result is not true. Moreover, we study when the converse of this result is true.

View Publication Preview PDF
Crossref
Publication Date
Fri Apr 30 2021
Journal Name
Iraqi Journal Of Science
F-µ-Semiregular Modules
...Show More Authors

Let  R be an associative ring with identity and let M be a left R-module . As a generalization of µ-semiregular modules, we introduce an F-µ-semiregular module. Let F be a submodule of M and x∊M. x is called F-µ-semiregular element in M , if there exists a decomposition M=A⨁B, such that A is a projective submodule of  and . M is called  F-µ-semiregular if x is F-µ-semiregular element for each x∊M. A condition under which the module µ-semiregular is F-µ-semiregular module was given. The basic properties and some characterizations of the F-µ-semiregular module were provided.

View Publication Preview PDF
Scopus Crossref