We investigate the interaction of proton with a solid target, describing the wake effects by taking fitted parameters with experimental values of energy loss function ELF for copper using the dielectric function of random phase approximation (RPA). The results exhibited a damped oscillatory behavior in the longitudinal direction behind the projectile. In addition, the wake potential becomes asymmetric around the z-axis with proton velocity values higher than Fermi velocity, as well as it depends on the position of projectile in cylindrical coordinates.
The study the problem emerged in the inability of local companies to enter the field of active competition with other companies operating in the same economic sector due to the high cost of their products, hence, the companies that want to apply this technique can effectively compete in order to achieve those objectives.
So this study focused on the goal of reducing the cost of products by reducing the cost product to a minimum , as the study was based in its hypothesis on the ability of companies to application this technique which in turn leads to increased profits under conditions of normal working and the power available and their potential in improving the quality of its products, as well as the need for full coordina
... Show MoreAcidity constants at 30co and 0.125 ionic strength have been determined for the Nitrogous bases of nucleic acid; cytocine, uarcil and thymine, and found to be 3.55 x10-19 , 1.44 x10 -19 and 7.24 x10 -20 respectively. Stability constants of these bases with Thorium and uranyl ions have been determined. Results showed that metal ions Thorium and uranyl ions behave as hard acids and the nitrogenum bases behave as Hard bases according to Pearson's definition .Hardness – softness parameters for these ligands were calculated ,stability constants of complexes with metal ions could be arranged as follows :- Cytosine > Uracil > Thymine .
Copper is a cheaper alternative to various noble metals with a range of potential applications in the field of nanoscience and nanotechnology. However, copper nanoparticles have major limitations, which include rapid oxidation on exposure to air. Therefore, alternative pathways have been developed to synthesize metal nanoparticles in the presence of polymers and surfactants as stabilizers, and to form coatings on the surface of nanoparticles. These surfactants and polymeric ligands are made from petrochemicals which are non- renewable. As fossil resources are limited, finding renewable and biodegradable alternative is promising.The study aimed at preparing, characterizing and evaluating the antibacterial properties of copper nanoparticle
... Show MoreThis study is directed at investigating the liquefaction potential within earth dams using numerical modelling by two-dimensional finite element analyses method for considering the Makhool earth dam on the Tigris River in Iraq. The effect of peak ground acceleration of 0.02g, 0.04g, 0.06g, and 0.08g is viewed for a shell, and the crest is presented for all scaled earthquake duration 25 s, 50 s, 75 s, and 100 s. The current study program comprises selecting a representative history point within the Makhool earth dam as a case study. Many points were allocated at different locations within the shell and crest to observe the fluctuation in the factor of safety against liquefaction. The seepage analysis results viewed graphically for the operat
... Show MoreThe purpose of this paper is to study the properties of the
partial level density ( ) l g and the total level density g ( ),
numerically obtained as a l sum of ( ) l g up to 34 max l , for
a Harmonic – Oscillator potential well. This method applied the
quantum – mechanical phase shift technique and concentrated
on the continuum region. Also a discussion of peculiarities of
quantal calculation for single particle level density of energy –
dependent potential
Nanocrystalline copper sulphide (Cu2-xS) powders were synthesized by chemical precipitation from their aqueous solutions composed of different molar ratio of copper sulfate dehydrate (CuSO4.5H2O) and thiorea (NH2)2CS as source of Cu+2, S-2 ions respectively, and sodium ethylene diamine tetra acetic acid dehydrate (EDTA) as a complex agent. The compositions, morphological and structural properties of the nanopowders were characterized by energy dispersive spectroscopy (EDS), scanning electron microscope (SEM), and X-ray diffraction (XRD), respectively. The compositional results showed that the copper content was high and the Sulfur content was low for both CuS and Cu2S nanopowders. SEM images shows that all products consist of aggregate o
... Show MoreSeveral industrial wastewater streams may contain heavy metal ions, which must be effectively removal
before the discharge or reuse of treated waters could take place. In this paper, the removal of copper( II)
by foam flotation from dilute aqueous solutions was investigated at laboratory scale. The effects of
various parameters such as pH, collector and frother concentrations, initial copper concentration, air flow
rate, hole diameter of the gas distributor, and NaCl addition were tested in a bubble column of 6 cm inside
diameter and 120 cm height. Sodium dodecylsulfate (SDS) and Hexadecyl trimethyl ammonium bromide
(HTAB) were used as anionic and cationic surfactant, respectively. Ethanol was used as frothers and the
In this work we study the influence of the laser pulse energy and ablation time on the aluminum nanoparticles productivity during nanosecond laser ablation of bulk aluminum immersed in liquid.
Aluminum nanoparticles were synthesized by pulsed laser ablation of Al targets in ethanol for 3-8 minutes using the 1064 nm wavelength of a Nd:YAG laser with energies of 300-500 mJ per pulse.The laser energy was varied between 300 and 500 mJ/pulse, whereas the ablation time was set to 5 minutes. UV-Visible absorption spectra was used for the characterization and comparison of products.