- IOP Trusted Reviewer 2024 [https://accreditations.ioppublishing.org/cd272b82-b456-48d3-8ef4-eff8cd5a80cb]
- IOP Trusted Reviewer 2023 [https://accreditations.ioppublishing.org/d142a6a2-2718-43ac-b87e-37ca506832fa]
- RSC Advances Reviewer Panel member in 2022 [http://click.rsc.org/rsps/m/fMvI3AhI5hWt8-UW5MC_5Ru761JwdtOa5shO4RtR_WQ]
- Outstanding Reviewer 2019 [https://publishingsupport.iopscience.iop.org/questions/physica-scripta-2019-reviewer-awards/]
Energy Loss Function, dielectric function, stopping power, induced potential, wake effects, electron density, ion beams, charge particle interactions, energy loss by charge particles, swift heavy ion, dielectric constants, lateral and stopping force,quantum oscillator,inelastic inverse mean free path,Bethe surface,Induced Electron Density,radiation dose,piezoelectric,complex dielectric function,Drude-Lorentz model,atomic physics,Bragg peak ,piezoelectric ceramics,hysteresis loop, plasmon resonance, plasmon decay ,plasmon lifetime ,oscillator strength,REELS ,Lindhard dielectric function ,atomic physics,Straggling.
In this paper, we propose an approach to estimate the induced potential, which is generated by swift heavy ions traversing a ZnO thin film, via an energy loss function (ELF). This induced potential is related to the projectile charge density, ρq(k) and is described by the extended Drude dielectric function. At zero momentum transfer, the resulting ELF exhibits good agreement with the previously reported results. The ELF, obtained by the extended Drude model, displays a realistic behavior over the Bethe ridge. It is observed that the induced potential relies on the heavy ion velocity and charge state q. Further, the numerical results show that the induced potential for neutral H, as projectile, dominates when the heavy ion velocity is less
... Show MorePhotocatalytic materials are being investigated as effective bactericides due to their superior ability to inactivate a broad range of dangerous microbes. In this study, the following two types of bacteria were employed for bactericidal purposes: Gram-negative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus). The shape, crystal structure, element percentage, and optical properties of Ag9(SiO4)2NO3 were examined after it was successfully synthesized by a standard mixing and grinding processing route. Bactericidal efficiency was recorded at 100% by the following two types of light sources: solar and simulated light, with initial photocatalyst concentration of 2 µg/mL, and 97% and 95% of bactericidal acti
... Show MoreLead-free 0.88(Na0.5Bi0.5)TiO3–0.084(K0.5Bi0.5)TiO3–0.036BaTiO3 (BNT–BKT–BT) piezoelectric ceramics were prepared using the conventional mixed-oxide method with a sintering temperature range of 1120–1200 °C. The effect of the sintering temperature on the crystal structure, microstructure, and densification, as well as the dielectrics, piezoelectrics, and the pyroelectric properties of BNT–BKT–BT ceramics were investigated. Scanning electron microscopy and X-ray diffraction were used to study the microstructures of the sintered samples. The results showed that the increase in sintering temperature was very effective in improving both the density and electrical properties. However, the samples deteriorated when the sintering te
... Show MoreThe wake potential and wake phenomena for swift proton in an amorphous carbon target were studied by utilising various dielectric function formalisms, including the Drude dielectric function, the Drude–Lorentz dielectric function and quantum dielectric function. The Drude model results exhibited a damped oscillatory behaviour in the longitudinal direction behind the projectile; the pattern of these oscillations decreases exponentially in the transverse direction. In addition, the wake potential extends slightly ahead of the projectile which also depends on the proton coordinate and velocity. The effect of electron binding on the wake potential, characterised by the ratio to 0.1, has been studied alongside the Drude–Lorentz dielectric
... Show MoreWe investigate the interaction of proton with a solid target, describing the wake effects by taking fitted parameters with experimental values of energy loss function ELF for copper using the dielectric function of random phase approximation (RPA). The results exhibited a damped oscillatory behavior in the longitudinal direction behind the projectile. In addition, the wake potential becomes asymmetric around the z-axis with proton velocity values higher than Fermi velocity, as well as it depends on the position of projectile in cylindrical coordinates.
In this paper, we propose a new and efficient ferroelectric nanostructure metal oxide lithium niobate [(Li1.075Nb0.625Ti0.45O3), (LNTO)] solid film as a saturable absorber (SA) for modulating passive Q-switched erbium-doped fiber laser (EDFL). The SA is fabricated as a nanocomposite solid film by the drop-casting process in which the LNTO is planted within polyvinylidene fluoride-trifluoroethylene [P(VDF-TrFE)] as host copolymer. The optical and physical characteristics of the solid film are experimentally established. The SA is incorporated within the cavity of EDFL to examine its capability for producing multi-wavelength laser. The experimental results proved that a multi-wavelength laser is produced, where stable four lines with central
... Show More