We investigate the interaction of proton with a solid target, describing the wake effects by taking fitted parameters with experimental values of energy loss function ELF for copper using the dielectric function of random phase approximation (RPA). The results exhibited a damped oscillatory behavior in the longitudinal direction behind the projectile. In addition, the wake potential becomes asymmetric around the z-axis with proton velocity values higher than Fermi velocity, as well as it depends on the position of projectile in cylindrical coordinates.
Background: Metal ions can be released from metallic orthodontic appliances due to corrosion in the oral cavity; prophylactic mouthwashes may have an effect on ion release from orthodontic wires. Materials and Methods: Thirty six orthodontic sets of half maxillary fixed appliance with 2 types of arch wires SS and NiTi(Morelli) were constructed and immersed in 2 types of mouthwashes; Claradone (non-fluoridated) and Silver Care (fluoridated) for 28 days at 37°C, then the released Ni and Cr ionswere measured using atomic absorption spectrophotometer and compared statistically. Results: Ni ion release was higher from NiTi wire group than SS wire group for both mouthwashes and also was higher for Silver Care group than for Claradone group.
... Show MoreNatural fractures provide an important reservoir space and migration channels for oil and gas reservoirs and control the reservoir potential. Therefore, it is essential to understand the methods for identifying accurate reservoir permeability and characterizing reservoir fractures. In particular, using conventional measurements to identify permeability and characterize fractures is very expensive. While using conventional logging data is very challenging, and an efficient characterization correlation method is urgently needed. In this paper, we have evaluated reservoir potential based on the sensitivity of sonic scanner tools to fluid mobility, maximum stress direction, and fractures presence. This tool provides a continuous estimat
... Show MoreIn this work we study the influence of the laser pulse energy and ablation time on the aluminum nanoparticles productivity during nanosecond laser ablation of bulk aluminum immersed in liquid.
Aluminum nanoparticles were synthesized by pulsed laser ablation of Al targets in ethanol for 3-8 minutes using the 1064 nm wavelength of a Nd:YAG laser with energies of 300-500 mJ per pulse.The laser energy was varied between 300 and 500 mJ/pulse, whereas the ablation time was set to 5 minutes. UV-Visible absorption spectra was used for the characterization and comparison of products.
The objective of this study is to determine the concentration of copper and lead (mg/L) in drinking water by using absorption spectrophotometic and Atomic Absorption spectrophotometric method from different area in Baghdad and with different intervals , The results show that the concentration of copper and Lead ( mgL) in tap water which remains motionless in plumbing system for following periods one hours, 3 hours, 6 hours, 12 hours, 24 hours, 7 days and 14 days are (1 , 2.2 , 4 , 5.3 , 7.5 , 10 and 16 mgL copper ) & ( 0.3, 0.5 , 0.8 , 1 , 2.5 , 3 , 3.8 mg /L lead ) respectively .from these results its clear that high levels of copper & Lead occur if tap water comes in contact with copper - lead plumbing and copper lead -containing fix
... Show MoreIn this research, the results of x-ray diffraction method were used to determine the uniform stress deformation and microstructure parameters of CuO nanoparticles to determine the lattice strain obtained and crystallite size and then to compare the results obtained by two model Halder Wagner and Size Strain Plot with the results of these methods of the same powder using equations during which the calculation of the size of the crystallite size and lattice strain, It was found that the results obtained the values of the crystallite size (19.81nm) and the lattice strain (0.004065) of the Halder-wagner model respectively and for the ssp method were the results of the crystallite size (17.20nm) and lattice strain (0.000305) respectively. The sa
... Show MoreCuO-ZnO-Al2O3 catalyst was prepared in the ratios of 20:30:50 respectively, using the coprecipitation method of Cu, Zn and Al carbonates from their nitrate solutions dissolved in distilled water by adding sodium bicarbonate as precipitant.The catalyst was identified by XRD and quantitatively analysis to determine the percentages of its components using flame atomic absorption technique. Also the surface area was measured by BET method. The activity of this prepared catalyst was examined through the oxidation of ethanol to acetaldehyde which was evaluated by gas chromatography.
Industrial effluents loaded with heavy metals are a cause of hazards to the humans and other forms of life. Conventional approaches, such as electroplating, ion exchange, and membrane processes, are used for removal of copper, cadmium, and lead and are often cost prohibitive with low efficiency at low metal ion concentration. Biosorption can be considered as an option which has been proven as more efficient and economical for removing the mentioned metal ions. Biosorbents used are fungi, yeasts, oil palm shells, coir pith carbon, peanut husks, and olive pulp. Recently, low cost and natural products have also been researched as biosorbent. This paper presents an attempt of the potential use of Iraqi date pits and Al-Khriet (i.e. substances l
... Show MoreIn this work copper nanopowder was created at different liquid
medias like DDDW, ethylene glycol and Polyvinylpyrrolidone
(PVP). Copper nanopowder prepared using explosion wire process
and investigated the effects of the exploding energy, wire diameter,
the type of liquid on the particle size, and the particles size
distribution. The nanoparticles are characterized by x-ray diffraction,
UV-visible absorption spectroscopy and transmission electron
microscopy (TEM). The x-ray diffraction results reveal that the
nanoparticles continue to routine lattice periodicity at reduced
particle size. The UV-Visible absorption spectrum of liquid solution
for copper nanoparticles shows sharp and single surface Plasmon
r
In the present study, the removal of zinc from synthetic waste water using emulsion liquid membrane extraction technique was investigated. Synthetic surfactant solution is used as the emulsifying agent. Diphenylthiocarbazon (ditizone) was used as the extracting agent dissolved in carbon tetrachloride as the organic solvent and sulfuric acid is used as the stripping agent. The parameters that influence the extraction percentage of Zn+2 were studied. These are the ratio of volume of organic solvent to volume of aqueous feed (0.5-4), ratio of volume of surfactant solution to volume of aqueous feed (0.2-1.6), pH of the aqueous feed solution (5-10), mixing intensity (100-1000) rpm, concentration of extracting agent (20-400) ppm, surfactant co
... Show More