This work focuses on the preparation of pure nanocrystalline SnO2 and SnO2:Cu thin films on cleaned glass substrates utilizing a sol-gel spin coating and chemical bath deposition (CBD) procedures. The primary aim of this study is to investigate the possible use of these thin films in the context of gas sensor applications. The films underwent annealing in an air environment at a temperature of 500 ◦C for duration of 60 minutes. The thickness of the film that was deposited may be estimated to be around 300 nm. The investigation included an examination of the structural, optical, electrical, and sensing characteristics, which were explored across various preparation circumstances, specifically focusing on varied concentrations of Cu-doping (2, 4, and 6 wt.%). The deposited films were analyzed by several techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), and optical absorption spectroscopy. The films generated by the spin coating method had a tetragonal rutile structure, while the films created via the chemical bath deposition (CBD) technique displayed both tetragonal rutile and orthorhombic structures. The spin coating technique was used to make films of several weight percentages (0, 2, 4, and 6 wt.%). The resulting crystallite sizes were examined and found to be 23 nm, 18 nm, 14 nm, and 10.5 nm, respectively. Similarly, films made using the chemical bath deposition (CBD) method exhibited crystallite sizes of 22, 13.9, 9.3, and 8.15 nm, respectively. The obtained findings from atomic force microscopy (AFM) and scanning electron microscopy (SEM) analyses indicate a consistent trend whereby, as the concentration of Cu-doped material rises, there is a decrease in the average grain size. The transmittance and absorbance spectra were examined within the wavelength range of 300 to 1000 nm. The films generated by both approaches exhibit a significant level of light transmission throughout the visible spectrum. The bandgap energy of spin coating and CBD films decreases with increasing Cu-doped concentrations; the values were (3.88, 3.8, 3.68, and 3.63) eV and (3.8, 3.78, 3.66, and 3.55) eV, respectively. The electrical characteristics of the films include direct current (DC) electrical conductivity, which indicates the presence of two activation energies, Ea1 and Ea2. These activation energies exhibit an upward trend when the concentration of Cu doping is increased. The films were examined for their ability to detect carbon monoxide (CO) gas at a concentration of about 50 ppm at normal room temperature conditions. The sensitivity of the films to carbon monoxide (CO) gas was assessed at various time intervals and temperatures. The results indicated that the film generated using spin coating exhibited a notably high sensitivity at a temperature of 200 °C, while the film prepared using the chemical bath deposition (CBD) approach had heightened sensitivity at a temperature of 150 °C. Keywords: Spin coating, SnO2 thin films, CBD, AFM, XRD, gas sensor.
The mechanism of hydrogen (H2) gas sensor in the range of 50-200 ppm of RF-sputtered annealed zinc oxide (ZnO) and without annealing was studied. The X-ray Diffraction( XRD) results showed that the Zn metal was completely converted to ZnO with a polycrystalline structure. The I–V characteristics of the device (PT/ZnO/Pt) measured at room temperature before and after annealing at 450 oC for4h, from which a linear relationship has been observed. The sensors had a maximum response to H2 at 350 oC for annealing ZnO and showed stable behavior for detecting H2 gases in the range of 50 to 200 ppm. The annealed film exhibited hig |
The energy density state are the powerful factor for evaluate the validity of a material in any application. This research focused on examining the electrical properties of the Se6Te4- xSbx glass semiconductor with x=1, 2 and 3, using the thermal evaporation technique. D.C electrical conductivity was used by determine the current, voltage and temperatures, where the electrical conductivity was studied as a function of temperature and the mechanical electrical conduction were determined in the different conduction regions (the extended and localized area and at the Fermi level). In addition, the density of the energy states in these regions is calculated using the mathematical equations. The constants of energy density states are det
... Show MoreThe child spends several hours watching animated films, which affect their behavior negatively and positively. This calls parents to monitor what their children are watching, to show them the serious risks of some violent films, and to direct them toward choosing both positive and educational programs that develop their positive behavior. This study aimed to explore the positive and negative effects of watching animation films as well as to identify the role animation films in increasing the cognitive knowledge of kindergarteners. To do this, the descriptive and analytical methods were used. A questionnaire was adopted as a tool for data collection. A scale of (45) items classified into three categories was applied on the r
... Show MoreJava is a high-level , third generation programming language were introduced Javaoptics Open Source Physics (OSP) as a new simulation for design one of the most important interference optical coating called antireflection coating. It is recent developments in deign thin-film coatings. (OSP) shows multiple beam interferences from a parallel dielectric thin film and the evolution of reflection factors. It is simple to use and efficiently also can serve educational purposes. The obtained results have been compared with needle method
In this work, the effect of the addition of bright nickel plating and silver carried out by the electroplating method has been studied, on the coating of copper nanoparticles on the copper base metal via the process of thermal evaporation. The improvement of the solar absorber using CuNP in combination with the bright nickel and silver was obtained to be better than copper nanoparticles individually. A bright nickel enhanced the absorbed thermal stability. Also, other optical properties, absorptions, and emissivity slightly decreased from (93% to 87%), while the existence of silver had a slight impact on absorption of about (86.50%). On the other hand, thermal conductivity was evaluated using hot disk analyzer. The results showed a good
... Show MoreIn this research, cyclic compounds derived from 2- furfural mercaptan (oxazole, triazoles) were synthesized, and their biological efficacy was measured and compared with standard drugs. Also, their effectiveness as anti-oxidant was measured and compared with ascorbic acid as a standard substance. Some of the synthesized compounds were deduced with good efficacy. © 2021 Sami Publishing Company. All rights reserved
the films of cdse pure and doped with copper ratio glass substrate effect od cucomcentration technique thikness doped with copper is an anonmg and the density of state increases