the films of cdse pure and doped with copper ratio glass substrate effect od cucomcentration technique thikness doped with copper is an anonmg and the density of state increases
Films of CdSe have been prepared by evaporation technique with thickness 1µm. Doping with Cu was achieved using annealing under argon atmosphere . The Structure properties of these films are investigated by X-ray diffraction analysis. The effect of Cu doping on the orientation , relative intensity, grain size and the lattice constant has been studied. The pure CdSe films have been found consist of amorphous structure with very small peak at (002) plane. The films were polycrystalline for doped CdSe with (1&2wt%) Cu contents and with lattice constant (a=3.741,c=7.096)A°, and it has better crystallinty as the Cu contents increased to (3&5wt%) Cu. The reflections from [(002), (102). (110), (112), and (201)]planes are more prominen
... Show MoreIn this work, we study the effect of doping Sn on the structural and optical properties of pure cadmium oxide films at different concentrations of Tin (Sn) (X=0.1,0.3 and 0.5) .The films prepared by using the laser-induced plasma at wavelength of laser 1064 nm and duration 9 ns under pressure reached to 2.5×10-2 mbar. The results of X-ray diffraction tests showed that the all prepared films are polycrystalline. As for the topography of the films surface, it was measured using AFM , where the results showed that the grain size increases with an increase in the percentage of doping in addition to an increase in the average roughness. The optical properties of all films have also been studied through the absorbance s
... Show MoreSemiconductor-based metal oxide gas detector of five mixed from zinc chloride Z and tin chloride S salts Z:S ratio 0, 25, 50, 75 and 100% were fabricated on glass substrate by a spray pyrolysis technique. With thickness were about 0.2 ±0.05 μm using water soluble as precursors at a glass substrate temperature 500 ºC±5, 0.05 M, and their gas sensing properties toward CH4, LPG and H2S gas at different concentration (10, 100, 1000 ppm) in air were investigated at room temperature which related with the petroleum refining industry.
Furthermore structural and morphology properties were scrutinize. Results shows that the mixing ratio affect the composition of formative oxides were (ZnO, Zn2SnO4, Zn2SnO4+ZnSnO3, ZnSnO3, SnO2) ratios ment
CdSe thin films were deposited on glass sudstrate by thermal evaporation method with thickness of (300±25%) nm with deposition rate (2±0.1) nm/s and at substrate temperature at (R.T.). XRD analysis reveals that the structure of pure thin films are Hexagonal and polycrystalline with preferential orientation (002). In this research ,we study the effect of doping with (1,2,3)% Aluminum on optical energy gap of (CdSe) thin film . The absorption was studied by using (UV - Visible 1800 spectra photometer ) within the wavelength (300-1100) nm absorption coefficient was calculated as a function of incident photon energy for identify type of electronic transitions it is found that the type of transition is direct , and we calculated the opt
... Show MoreThe effect of different doping ratio (0.3, 0.5, and 0.7) with thickness in the range 300nmand annealed at different temp.(Ta=RT, 473, 573, 673) K on the electrical conductivity and hall effect measurements of AgInTe2thin film have and been investigated AgAlxIn(1-x) Te2 (AAIT) at RT, using thermal evaporation technique all the films were prepared on glass substrates from the alloy of the compound. Electrical conductivity (σ), the activation energies (Ea1, Ea2), Hall mobility and the carrier concentration are investigated as a function of doping. All films consist of two types of transport mechanisms for free carriers. The activation energy (Ea) decreased whereas electrical conductivity increases with increased doping. Results of Hall Effect
... Show MoreIn this research we studied the structural and optical properties of (CdTe) thin films which have been prepared by thermal evaporation deposition method on the glass substrate at R.T with thickness (450  25) nm., as a function of doping ratio with copper element in (1,3,5) % rate .The structure measurement by X-ray diffraction (XRD) analyses shows that the single phase of (CdTe) with polycrystalline structure with a preferred orientation [111]. The optical measurement shows that the (CdTe) films have a direct energy gap, and they decrease with the increase of doping ratio reaching to 5% . The optical constants are investigated and calculated, such as absorpti
... Show MoreIn this study, the ZnTe thin films were deposited on a glass substrate at a thickness of 400nm using vacuum evaporation technique (2×10-5mbar) at RT. Electrical conductivity and Hall effect measurements have been investigated as a function of variation of the doping ratios (3,5,7%) of the Cu element on the thin ZnTe films. The temperature range of (25-200°C) is to record the electrical conductivity values. The results of the films have two types of transport mechanisms of free carriers with two values of activation energy (Ea1, Ea2), expect 3% Cu. The activation energy (Ea1) increased from 29meV to 157meV before and after doping (Cu at 5%) respectively. The results of Hal
... Show MoreRare earth elements (Cerium, Lanthanum and Neodymium) doped CdS thin films are prepared using the chemical Spray Pyrolysis Method with temperature 200 oC. The X-ray diffraction (XRD) analysis refers that pure CdS and CdS:Ce, CdS:La and CdS:Nd thin films showed the hexagonal crystalline phase. The crystallite size determined by the Debye-Scherrer equation and the range was (35.8– 23.76 nm), and it was confirmed by field emission scanning electron microscopy (FE-SEM). The pure and doped CdS shows a direct band gap (2.57 to 2.72 eV), which was obtained by transmittance. The room-temperature photoluminescence of pure and doped CdS shows large peak at 431 nm, and two small peaks at (530 and 610 nm). The Current – voltage measurement in da
... Show More