Preferred Language
Articles
/
1hctP48BVTCNdQwCxmVA
Knee Meniscus Segmentation and Tear Detection Based On Magnitic Resonacis Images: A Review of Literature
...Show More Authors

The meniscus has a crucial function in human anatomy, and Magnetic Resonance Imaging (M.R.I.) plays an essential role in meniscus assessment. It is difficult to identify cartilage lesions using typical image processing approaches because the M.R.I. data is so diverse. An M.R.I. data sequence comprises numerous images, and the attributes area we are searching for may differ from each image in the series. Therefore, feature extraction gets more complicated, hence specifically, traditional image processing becomes very complex. In traditional image processing, a human tells a computer what should be there, but a deep learning (D.L.) algorithm extracts the features of what is already there automatically. The surface changes become valuable when diagnosing a tissue sample. Small, unnoticeable changes in pixel density may indicate the beginning of cancer or tear tissue in the early stages. These details even expert pathologists might miss. Artificial intelligence (A.I.) and D.L. revolutionized radiology by enhancing efficiency and accuracy of both interpretative and non-interpretive jobs. When you look at AI applications, you should think about how they might work. Convolutional Neural Network (C.N.N.) is a part of D.L. that can be used to diagnose knee problems. There are existing algorithms that can detect and categorize cartilage lesions, meniscus tears on M.R.I., offer an automated quantitative evaluation of healing, and forecast who is most likely to have recurring meniscus tears based on radiographs.

Publication Date
Thu Apr 25 2019
Journal Name
Engineering And Technology Journal
Improvement of Harris Algorithm Based on Gaussian Scale Space
...Show More Authors

Features is the description of the image contents which could be corner, blob or edge. Corners are one of the most important feature to describe image, therefore there are many algorithms to detect corners such as Harris, FAST, SUSAN, etc. Harris is a method for corner detection and it is an efficient and accurate feature detection method. Harris corner detection is rotation invariant but it isn’t scale invariant. This paper presents an efficient harris corner detector invariant to scale, this improvement done by using gaussian function with different scales. The experimental results illustrate that it is very useful to use Gaussian linear equation to deal with harris weakness.

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat Jul 01 2023
Journal Name
International Journal Of Computing And Digital Systems
Human Identification Based on SIFT Features of Hand Image
...Show More Authors

View Publication
Scopus (2)
Scopus Crossref
Publication Date
Tue Apr 30 2024
Journal Name
Iraqi Journal Of Science
Topology-Based Modularity and Modularity Density for Detecting Protein Complexes: A Comparative Study
...Show More Authors

     Binary relations or interactions among bio-entities, such as proteins, set up the essential part of any living biological system. Protein-protein interactions are usually structured in a graph data structure called "protein-protein interaction networks" (PPINs). Analysis of PPINs into complexes tries to lay out the significant knowledge needed to answer many unresolved questions, including how cells are organized and how proteins work. However, complex detection problems fall under the category of non-deterministic polynomial-time hard (NP-Hard) problems due to their computational complexity. To accommodate such combinatorial explosions, evolutionary algorithms (EAs) are proven effective alternatives to heuristics in solvin

... Show More
View Publication
Scopus Crossref
Publication Date
Sun Dec 03 2017
Journal Name
Baghdad Science Journal
Network Self-Fault Management Based on Multi-Intelligent Agents and Windows Management Instrumentation (WMI)
...Show More Authors

This paper proposed a new method for network self-fault management (NSFM) based on two technologies: intelligent agent to automate fault management tasks, and Windows Management Instrumentations (WMI) to identify the fault faster when resources are independent (different type of devices). The proposed network self-fault management reduced the load of network traffic by reducing the request and response between the server and client, which achieves less downtime for each node in state of fault occurring in the client. The performance of the proposed system is measured by three measures: efficiency, availability, and reliability. A high efficiency average is obtained depending on the faults occurred in the system which reaches to

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Tue Aug 10 2021
Journal Name
Design Engineering
Lossy Image Compression Using Hybrid Deep Learning Autoencoder Based On kmean Clusteri
...Show More Authors

Image compression plays an important role in reducing the size and storage of data while increasing the speed of its transmission through the Internet significantly. Image compression is an important research topic for several decades and recently, with the great successes achieved by deep learning in many areas of image processing, especially image compression, and its use is increasing Gradually in the field of image compression. The deep learning neural network has also achieved great success in the field of processing and compressing various images of different sizes. In this paper, we present a structure for image compression based on the use of a Convolutional AutoEncoder (CAE) for deep learning, inspired by the diversity of human eye

... Show More
Publication Date
Mon Mar 07 2022
Journal Name
Journal Of Educational And Psychological Researches
The Effectiveness of Cognitive Conflict Strategy in Comprehending Reading Among the Fifth Literary Students in the Subject of Literature and Texts
...Show More Authors

The aim of the current study is to identify the effectiveness of cognitive conflict strategy in comprehending reading among literary fifth students in literature and literature texts. The researcher uses experimental method with partial control. The sample consisted of (80) students distributed into control and experimental groups. The scientific material, the behavioral goals, the teaching plans, and the instrument of the research have been prepared (reading comprehension test) by the researcher.

The instrument's validity and reliability have been calculated and then applied to the sample. After treating the data statistically by using SPSS, the results have revealed that there is a statistically significant difference at the si

... Show More
View Publication Preview PDF
Publication Date
Sat Feb 12 2022
Journal Name
Journal Of Education College Wasit University
The Role of Picture Books in Raising Children's Understanding of English Literature and Life Science Concepts: Selected Stories by Eric Carle
...Show More Authors

Abstract The current study is a theoretical study that aims to underline the role of picture books as a serious genre of children's literature in raising children's understanding of English literature and life concepts; especially for non-English speakers. Unfortunately, most Iraqi people have developed a social phobia of learning English since childhood. This phobia is resulted from the heavy traditional reading and writing assignments as well as hard exams. Therefore, this study suggests incorporating more interesting literary material like picture books that would bring pleasure and help in raising children's love and cognition of English Language. More significantly, it calls to replace the old curriculum with a more vital

... Show More
View Publication
Crossref
Publication Date
Mon Apr 03 2023
Journal Name
Journal Of Educational And Psychological Researches
The Effectiveness of a Training Program Based on Connectivism Theory in Developing E-Learning Competencies among Teachers of Islamic Education in Dhofar Governorate
...Show More Authors

Abstract

The study aims to build a training program based on the Connectivism Theory to develop e-learning competencies for Islamic education teachers in the Governorate of Dhofar, as well as to identify its effectiveness. The study sample consisted of (30) Islamic education teachers to implement the training program, they were randomly selected. The study used the descriptive approach to determine the electronic competencies and build the training program, and the quasi-experimental approach to determine the effectiveness of the program. The study tools were the cognitive achievement test and the observation card, which were applied before and after. The study found that the effectiveness of the training program

... Show More
View Publication Preview PDF
Publication Date
Wed Jul 01 2015
Journal Name
Magnetic Resonance Imaging
Alpha shape theory for 3D visualization and volumetric measurement of brain tumor progression using magnetic resonance images
...Show More Authors

Alpha shape theory for 3D visualization and volumetric measurement of brain tumor progression using magnetic resonance images

View Publication
Scopus (29)
Crossref (23)
Scopus Clarivate Crossref
Publication Date
Fri Aug 20 2021
Journal Name
European Journal Of Molecular & Clinical Medicine
Comparative study of obesity between men and women: Review
...Show More Authors

Obesity is disorder in a foremost nutritional health it’s developed with countries developing. Also is known as increasingin fat accumulation that lead toproblem in health, besidesmay coin one of the reasons lead toloss of life,the obesity not effect on adults just but effect onoffspringand juveniles. In some ofinhabitants the incidence of obesity is superior in female than in male; on the other hand, the variation degree of the between the genderdifferby country.Obesity is generally measured by body mass index and waist circumference, Obesity are classified according to body mass index into:Pre obesity sort 1 : (25 - 29.9) kg/m2, Obesity sort 2 : (30 - 34.9 kg/m2) and extreme obesity sort 3: (40 kg/m2) or greater. Obesity is described by

... Show More