Preferred Language
Articles
/
1hctP48BVTCNdQwCxmVA
Knee Meniscus Segmentation and Tear Detection Based On Magnitic Resonacis Images: A Review of Literature
...Show More Authors

The meniscus has a crucial function in human anatomy, and Magnetic Resonance Imaging (M.R.I.) plays an essential role in meniscus assessment. It is difficult to identify cartilage lesions using typical image processing approaches because the M.R.I. data is so diverse. An M.R.I. data sequence comprises numerous images, and the attributes area we are searching for may differ from each image in the series. Therefore, feature extraction gets more complicated, hence specifically, traditional image processing becomes very complex. In traditional image processing, a human tells a computer what should be there, but a deep learning (D.L.) algorithm extracts the features of what is already there automatically. The surface changes become valuable when diagnosing a tissue sample. Small, unnoticeable changes in pixel density may indicate the beginning of cancer or tear tissue in the early stages. These details even expert pathologists might miss. Artificial intelligence (A.I.) and D.L. revolutionized radiology by enhancing efficiency and accuracy of both interpretative and non-interpretive jobs. When you look at AI applications, you should think about how they might work. Convolutional Neural Network (C.N.N.) is a part of D.L. that can be used to diagnose knee problems. There are existing algorithms that can detect and categorize cartilage lesions, meniscus tears on M.R.I., offer an automated quantitative evaluation of healing, and forecast who is most likely to have recurring meniscus tears based on radiographs.

Publication Date
Tue Jul 01 2014
Journal Name
Ieee Transactions On Circuits And Systems I: Regular Papers
Crosstalk-Aware Multiple Error Detection Scheme Based on Two-Dimensional Parities for Energy Efficient Network on Chip
...Show More Authors

Achieving reliable operation under the influence of deep-submicrometer noise sources including crosstalk noise at low voltage operation is a major challenge for network on chip links. In this paper, we propose a coding scheme that simultaneously addresses crosstalk effects on signal delay and detects up to seven random errors through wire duplication and simple parity checks calculated over the rows and columns of the two-dimensional data. This high error detection capability enables the reduction of operating voltage on the wire leading to energy saving. The results show that the proposed scheme reduces the energy consumption up to 53% as compared to other schemes at iso-reliability performance despite the increase in the overhead number o

... Show More
View Publication
Scopus (25)
Crossref (19)
Scopus Clarivate Crossref
Publication Date
Thu Aug 31 2023
Journal Name
Journal Européen Des Systèmes Automatisés​
Deep Learning Approach for Oil Pipeline Leakage Detection Using Image-Based Edge Detection Techniques
...Show More Authors

Natural gas and oil are one of the mainstays of the global economy. However, many issues surround the pipelines that transport these resources, including aging infrastructure, environmental impacts, and vulnerability to sabotage operations. Such issues can result in leakages in these pipelines, requiring significant effort to detect and pinpoint their locations. The objective of this project is to develop and implement a method for detecting oil spills caused by leaking oil pipelines using aerial images captured by a drone equipped with a Raspberry Pi 4. Using the message queuing telemetry transport Internet of Things (MQTT IoT) protocol, the acquired images and the global positioning system (GPS) coordinates of the images' acquisition are

... Show More
View Publication
Scopus (12)
Crossref (4)
Scopus Crossref
Publication Date
Thu Jan 20 2022
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
A Subject Review on a Some Analytical Methods for the Determination of Chloroquine and Hydroxychloroquine Drugs
...Show More Authors

Chloroquine and Hydroxychloroquine drugs are widely prescribed for malaria disease. Since the end of 2019, humans have been under threat due to a disease called (COVID-19), which was first reported in China. Many methodical approaches have been reported to quantify chloroquine and hydroxychloroquine in blood, urine, plasma, serum, and pharmaceutical dosage form. Some of these techniques are spectrophotometry, liquid chromatography with a mass detector, gas chromatography, and ultra-performance, high-performance liquid chromatography (HPLC), in addition to electrochemical methods. This literature review discusses various analytical methods for the determining hydroxychloroquine and chloroquine.

View Publication Preview PDF
Crossref
Publication Date
Wed Jun 01 2022
Journal Name
Iraqi Journal Of Industrial Research (ijoir)
Biofuel Production and Its Impact on Global Food Security: A Review Article
...Show More Authors

The aim of this study is to shed light on the importance of biofuels as an alternative to conventional energy, in addition to the importance of preserving agricultural crops, which are the main source of this fuel, to maintain food security, especially in developing countries. The increase in global oil prices, in addition to the fear of global warming, are among the main factors that draw the world’s attention to searching for alternative sources of traditional energy, which are sustainable on the one hand, and on the other hand reduce carbon emissions. Therefore, the volume of global investment in renewable energy in general, and in liquid biofuels and biomass in particular, has increased. Global fears emerged that the excessive convers

... Show More
Preview PDF
Publication Date
Tue Jun 14 2022
Journal Name
Iraqi Journal Of Industrial Research
Biofuel Production and Its Impact on Global Food Security: A Review Article
...Show More Authors

The aim of this study is to shed light on the importance of biofuels as an alternative to conventional energy, in addition to the importance of preserving agricultural crops, which are the main source of this fuel, to maintain food security, especially in developing countries. The increase in global oil prices, in addition to the fear of global warming, are among the main factors that draw the world’s attention to searching for alternative sources of traditional energy, which are sustainable on the one hand, and on the other hand reduce carbon emissions. Therefore, the volume of global investment in renewable energy in general, and in liquid biofuels and biomass in particular, has increased. Global fears emerged that the excessive

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Oct 25 2023
Journal Name
Urban Planning And Construction
A Review on Urban Planning and Its Role in Managing Flood Risks
...Show More Authors

This review delves deep into the intricate relationship between urban planning and flood risk management, tracing its historical trajectory and the evolution of methodologies over time. Traditionally, urban centers prioritized defensive measures, like dikes and levees, with an emphasis on immediate solutions over long-term resilience. These practices, though effective in the short term, often overlooked broader environmental implications and the necessity for holistic planning. However, as urban areas burgeoned and climate change introduced new challenges, there has been a marked shift in approach. Modern urban planning now emphasizes integrated blue-green infrastructure, aiming to harmonize human habitation with water cycles. Resil

... Show More
View Publication
Crossref (2)
Crossref
Publication Date
Sun Jun 02 2019
Journal Name
Baghdad Science Journal
Fog Computing Resource Optimization: A Review on Current Scenarios and Resource Management
...Show More Authors

            The unpredictable and huge data generation nowadays by smart computing devices like (Sensors, Actuators, Wi-Fi routers), to handle and maintain their computational processing power in real time environment by centralized cloud platform is difficult because of its limitations, issues and challenges, to overcome these, Cisco introduced the Fog computing paradigm as an alternative for cloud-based computing. This recent IT trend is taking the computing experience to the next level. It is an extended and advantageous extension of the centralized cloud computing technology. In this article, we tried to highlight the various issues that currently cloud computing is facing. Here

... Show More
View Publication Preview PDF
Scopus (11)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Artificial Intelligence For Covid-19
An Efficient Mixture of Deep and Machine Learning Models for COVID-19 and Tuberculosis Detection Using X-Ray Images in Resource Limited Settings
...Show More Authors

View Publication
Scopus (28)
Crossref (25)
Scopus Crossref
Publication Date
Sat Apr 30 2022
Journal Name
Pakistan Journal Of Medical And Health Sciences
Role of Progranulin and its Implication in Knee Osteoarthritis among Iraqi Patients
...Show More Authors

Background: Osteoarthritis is a complicated, chronic disorder of cartilage and bone, associated with homeostasis of bio-elements. The current study aims to assess the role of serum progranulin levels among Iraqi patients with knee osteoarthritis. Patients and Methods: The study encompassed 50 patients aged 52.50 ± 3.12 years (25 males and 25 females), admitted to the at the Baghdad Medical City through the period from November 2021 to March 2022. All individuals were identified by physicians in a Rheumatology and Rehabilitation Outpatient Clinic and the clinical data was collected along with the assess¬ment of biochemical parameters. Fasting serum glucose, lipid profile, calcium, magnesium, alkaline phosphatase, vitamin D3, and p

... Show More
View Publication
Crossref
Publication Date
Tue Jun 20 2023
Journal Name
Baghdad Science Journal
Detection of Autism Spectrum Disorder Using A 1-Dimensional Convolutional Neural Network
...Show More Authors

Autism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D

... Show More
View Publication Preview PDF
Scopus (24)
Crossref (17)
Scopus Crossref