Preferred Language
Articles
/
1hctP48BVTCNdQwCxmVA
Knee Meniscus Segmentation and Tear Detection Based On Magnitic Resonacis Images: A Review of Literature
...Show More Authors

The meniscus has a crucial function in human anatomy, and Magnetic Resonance Imaging (M.R.I.) plays an essential role in meniscus assessment. It is difficult to identify cartilage lesions using typical image processing approaches because the M.R.I. data is so diverse. An M.R.I. data sequence comprises numerous images, and the attributes area we are searching for may differ from each image in the series. Therefore, feature extraction gets more complicated, hence specifically, traditional image processing becomes very complex. In traditional image processing, a human tells a computer what should be there, but a deep learning (D.L.) algorithm extracts the features of what is already there automatically. The surface changes become valuable when diagnosing a tissue sample. Small, unnoticeable changes in pixel density may indicate the beginning of cancer or tear tissue in the early stages. These details even expert pathologists might miss. Artificial intelligence (A.I.) and D.L. revolutionized radiology by enhancing efficiency and accuracy of both interpretative and non-interpretive jobs. When you look at AI applications, you should think about how they might work. Convolutional Neural Network (C.N.N.) is a part of D.L. that can be used to diagnose knee problems. There are existing algorithms that can detect and categorize cartilage lesions, meniscus tears on M.R.I., offer an automated quantitative evaluation of healing, and forecast who is most likely to have recurring meniscus tears based on radiographs.

Publication Date
Sun Mar 01 2015
Journal Name
International Journal Of Computer Science And Mobile Computing
Single Face Detection on Skin Color and Edge Detection
...Show More Authors

Publication Date
Sat Jan 01 2022
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
Construct an efficient distributed denial of service attack detection system based on data mining techniques
...Show More Authors

<span>Distributed denial-of-service (DDoS) attack is bluster to network security that purpose at exhausted the networks with malicious traffic. Although several techniques have been designed for DDoS attack detection, intrusion detection system (IDS) It has a great role in protecting the network system and has the ability to collect and analyze data from various network sources to discover any unauthorized access. The goal of IDS is to detect malicious traffic and defend the system against any fraudulent activity or illegal traffic. Therefore, IDS monitors outgoing and incoming network traffic. This paper contains a based intrusion detection system for DDoS attack, and has the ability to detect the attack intelligently, dynami

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Fri Feb 17 2023
Journal Name
Sustainability
Sustainable Utilization of Machine-Vision-Technique-Based Algorithm in Objective Evaluation of Confocal Microscope Images
...Show More Authors

Confocal microscope imaging has become popular in biotechnology labs. Confocal imaging technology utilizes fluorescence optics, where laser light is focused onto a specific spot at a defined depth in the sample. A considerable number of images are produced regularly during the process of research. These images require methods of unbiased quantification to have meaningful analyses. Increasing efforts to tie reimbursement to outcomes will likely increase the need for objective data in analyzing confocal microscope images in the coming years. Utilizing visual quantification methods to quantify confocal images with naked human eyes is an essential but often underreported outcome measure due to the time required for manual counting and e

... Show More
View Publication
Scopus (4)
Scopus Clarivate Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Materials Today: Proceedings
Energy management and storage systems on electric vehicles: A comprehensive review
...Show More Authors

View Publication
Scopus (52)
Crossref (46)
Scopus Clarivate Crossref
Publication Date
Fri Dec 01 2023
Journal Name
Russian Journal Of Bioorganic Chemistry
A Brief Review on Schiff Base, Synthesis, and Their Antimicrobial Activities
...Show More Authors

View Publication
Scopus (10)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Ieee Access
Microwave Nondestructive Testing for Defect Detection in Composites Based on K-Means Clustering Algorithm
...Show More Authors

View Publication
Scopus (60)
Crossref (60)
Scopus Clarivate Crossref
Publication Date
Sun Nov 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Development of an Optimized Botnet Detection Framework based on Filters of Features and Machine Learning Classifiers using CICIDS2017 Dataset
...Show More Authors
Abstract<p>Botnet is a malicious activity that tries to disrupt traffic of service in a server or network and causes great harm to the network. In modern years, Botnets became one of the threads that constantly evolving. IDS (intrusion detection system) is one type of solutions used to detect anomalies of networks and played an increasing role in the computer security and information systems. It follows different events in computer to decide to occur an intrusion or not, and it used to build a strategic decision for security purposes. The current paper <italic>suggests</italic> a hybrid detection Botnet model using machine learning approach, performed and analyzed to detect Botnet atta</p> ... Show More
View Publication
Scopus (19)
Crossref (12)
Scopus Crossref
Publication Date
Mon Dec 14 2020
Journal Name
2020 13th International Conference On Developments In Esystems Engineering (dese)
Anomaly Based Intrusion Detection System Using Hierarchical Classification and Clustering Techniques
...Show More Authors

With the rapid development of computers and network technologies, the security of information in the internet becomes compromise and many threats may affect the integrity of such information. Many researches are focused theirs works on providing solution to this threat. Machine learning and data mining are widely used in anomaly-detection schemes to decide whether or not a malicious activity is taking place on a network. In this paper a hierarchical classification for anomaly based intrusion detection system is proposed. Two levels of features selection and classification are used. In the first level, the global feature vector for detection the basic attacks (DoS, U2R, R2L and Probe) is selected. In the second level, four local feature vect

... Show More
View Publication
Scopus (3)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sun May 01 2016
Journal Name
Journal Of Pharmaceutical, Chemical And Biological Sciences
Review on: Vaginitis. A problem to be solved!!
...Show More Authors

Candida is the scientific name for yeast. It is a fungus that lives almost everywhere, including in human body. Usually, the immune system keeps yeast under control. If the individual is sick or taking antibiotics, it can multiply and cause an infection. Yeast infections affect different parts of the body in different ways including thrush is a yeast infection that causes white patches in oral cavity ,Candida esophagitis is thrush that spreads to esophagus, women can get vaginal yeast infections,(vaginitis) causing itchiness, pain and discharge, yeast infections of the skin cause itching and rashes ,yeast infections in bloodstream can be life-threatening . The current review article will concentrate on vaginal infection (vaginitis), project

... Show More
Publication Date
Mon Mar 01 2021
Journal Name
Journal Of Physics: Conference Series
A Review on Arabic Sign Language Translator Systems
...Show More Authors
Abstract<p>Deaf and dumb peoples are suffering difficulties most of the time in communicating with society. They use sign language to communicate with each other and with normal people. But Normal people find it more difficult to understand the sign language and gestures made by deaf and dumb people. Therefore, many techniques have been employed to tackle this problem by converting the sign language to a text or a voice and vice versa. In recent years, research has progressed steadily in regard to the use of computers to recognize and translate the sign language. This paper reviews significant projects in the field beginning with important steps of sign language translation. These projects can b</p> ... Show More
View Publication
Scopus (7)
Crossref (4)
Scopus Crossref