Preferred Language
Articles
/
1hctP48BVTCNdQwCxmVA
Knee Meniscus Segmentation and Tear Detection Based On Magnitic Resonacis Images: A Review of Literature
...Show More Authors

The meniscus has a crucial function in human anatomy, and Magnetic Resonance Imaging (M.R.I.) plays an essential role in meniscus assessment. It is difficult to identify cartilage lesions using typical image processing approaches because the M.R.I. data is so diverse. An M.R.I. data sequence comprises numerous images, and the attributes area we are searching for may differ from each image in the series. Therefore, feature extraction gets more complicated, hence specifically, traditional image processing becomes very complex. In traditional image processing, a human tells a computer what should be there, but a deep learning (D.L.) algorithm extracts the features of what is already there automatically. The surface changes become valuable when diagnosing a tissue sample. Small, unnoticeable changes in pixel density may indicate the beginning of cancer or tear tissue in the early stages. These details even expert pathologists might miss. Artificial intelligence (A.I.) and D.L. revolutionized radiology by enhancing efficiency and accuracy of both interpretative and non-interpretive jobs. When you look at AI applications, you should think about how they might work. Convolutional Neural Network (C.N.N.) is a part of D.L. that can be used to diagnose knee problems. There are existing algorithms that can detect and categorize cartilage lesions, meniscus tears on M.R.I., offer an automated quantitative evaluation of healing, and forecast who is most likely to have recurring meniscus tears based on radiographs.

Publication Date
Tue Jun 25 2024
Journal Name
Biomedical And Pharmacology Journal
Psidium guajava: A Review on Its Pharmacological and Phytochemical Constituents
...Show More Authors

Psidium guajava, belonging to the Myrtaceae family, thrives in tropical and subtropical regions worldwide. This important tropical fruit finds widespread cultivation in countries like India, Indonesia, Syria, Pakistan, Bangladesh, and South America. Throughout its various parts, including fruits, leaves, and barks, guava boasts a rich reservoir of bioactive compounds that have been traditionally utilized as folkloric herbal medicines, offering numerous therapeutic applications. Within guava, an extensive array of Various compounds with antioxidative properties and phytochemical constituents are present, including essential oils, polysaccharides, minerals, vitamins, enzymes, triterpenoids, alkaloids, steroids, glycosides, tannins, fl

... Show More
View Publication
Scopus (7)
Crossref (7)
Scopus Crossref
Publication Date
Wed Jun 24 2020
Journal Name
Neuroimaging - Neurobiology, Multimodal And Network Applications
Electroencephalogram Based Biomarkers for Detection of Alzheimer’s Disease
...Show More Authors

Alzheimer’s disease (AD) is an age-related progressive and neurodegenerative disorder, which is characterized by loss of memory and cognitive decline. It is the main cause of disability among older people. The rapid increase in the number of people living with AD and other forms of dementia due to the aging population represents a major challenge to health and social care systems worldwide. Degeneration of brain cells due to AD starts many years before the clinical manifestations become clear. Early diagnosis of AD will contribute to the development of effective treatments that could slow, stop, or prevent significant cognitive decline. Consequently, early diagnosis of AD may also be valuable in detecting patients with dementia who have n

... Show More
View Publication
Crossref (2)
Crossref
Publication Date
Fri Nov 01 2019
Journal Name
2019 1st International Informatics And Software Engineering Conference (ubmyk)
Radial Basis Function (RBF) Based on Multistage Autoencoders for Intrusion Detection system (IDS)
...Show More Authors

In this paper, RBF-based multistage auto-encoders are used to detect IDS attacks. RBF has numerous applications in various actual life settings. The planned technique involves a two-part multistage auto-encoder and RBF. The multistage auto-encoder is applied to select top and sensitive features from input data. The selected features from the multistage auto-encoder is wired as input to the RBF and the RBF is trained to categorize the input data into two labels: attack or no attack. The experiment was realized using MATLAB2018 on a dataset comprising 175,341 case, each of which involves 42 features and is authenticated using 82,332 case. The developed approach here has been applied for the first time, to the knowledge of the authors, to dete

... Show More
View Publication
Scopus (3)
Crossref (2)
Scopus Crossref
Publication Date
Sat Apr 01 2023
Journal Name
Baghdad Science Journal
Interior Visual Intruders Detection Module Based on Multi-Connect Architecture MCA Associative Memory
...Show More Authors

Most recent studies have focused on using modern intelligent techniques spatially, such as those
developed in the Intruder Detection Module (IDS). Such techniques have been built based on modern
artificial intelligence-based modules. Those modules act like a human brain. Thus, they should have had the
ability to learn and recognize what they had learned. The importance of developing such systems came after
the requests of customers and establishments to preserve their properties and avoid intruders’ damage. This
would be provided by an intelligent module that ensures the correct alarm. Thus, an interior visual intruder
detection module depending on Multi-Connect Architecture Associative Memory (MCA)

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science (ijeecs)
Increasing validation accuracy of a face mask detection by new deep learning model-based classification
...Show More Authors

During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve

... Show More
Crossref (4)
Crossref
Publication Date
Fri Jan 01 2016
Journal Name
Proceedings Of The Eleventh International Network Conference (inc 2016)
A review on power consumption reduction techniques on OFDM
...Show More Authors

Scopus (2)
Scopus
Publication Date
Mon Feb 18 2019
Journal Name
British Journal Of Neurosurgery
An enemy hides in the ceiling; pediatric traumatic brain injury caused by metallic ceiling fan: Case series and literature review
...Show More Authors

Purpose: We report a series of 29 pediatric patients who sustained head injuries due to metallic ceiling fans. They all were admitted to the Emergency Department of Neurosurgery Teaching Hospital in Baghdad, Iraq, during January 2015 to January 2017. Results: Pediatric ceiling fan head injuries are characterized by four traits which distinguish them from other types of head injuries; 1- Most of them were because of climbing on or jumping from furniture between the ages of two and five. 2- Most of them sustained compound depressed skull fracture which associated with intracranial lesions and pneumocephalus. 3- The most common indication for surgical intervention was because of dirty wound which mixed with hairs. 4- These variables were stati

... Show More
View Publication
Scopus (8)
Crossref (8)
Scopus Clarivate Crossref
Publication Date
Sat Aug 01 2015
Journal Name
Modern Applied Science
A New Method for Detecting Cerebral Tissues Abnormality in Magnetic Resonance Images
...Show More Authors

We propose a new method for detecting the abnormality in cerebral tissues present within Magnetic Resonance Images (MRI). Present classifier is comprised of cerebral tissue extraction, image division into angular and distance span vectors, acquirement of four features for each portion and classification to ascertain the abnormality location. The threshold value and region of interest are discerned using operator input and Otsu algorithm. Novel brain slices image division is introduced via angular and distance span vectors of sizes 24˚ with 15 pixels. Rotation invariance of the angular span vector is determined. An automatic image categorization into normal and abnormal brain tissues is performed using Support Vector Machine (SVM). St

... Show More
Publication Date
Mon Aug 01 2011
Journal Name
Journal Of Engineering
DAMAGE DETECTION AND LOCATION FOR IN AND OUT-OFPLANE CURVED BEAMS USING FUZZY LOGIC BASED ON FREQUENCY DIFFERENCE
...Show More Authors

In this study, structures damage identification method based on changes in the dynamic characteristics
(frequencies) of the structure are examined, stiffness as well as mass matrices of the curved
(in and out-of-plane vibration) beam elements is formulated using Hamilton's principle. Each node
of both of them possesses seven degrees of freedom including the warping degree of freedom. The
curved beam element had been derived based on the Kang and Yoo’s thin-walled curved beam theory
in 1994. A computer program was developing to carry out free vibration analyses of the curved
beam as well as straight beam. Comparing with the frequencies for other researchers using the general
purpose program MATLAB. Fuzzy logic syste

... Show More
View Publication Preview PDF
Crossref (3)
Crossref
Publication Date
Mon Mar 18 2024
Journal Name
Inflammopharmacology
The effects of cholesterol and statins on Parkinson’s neuropathology: a narrative review
...Show More Authors

View Publication
Scopus (7)
Crossref (10)
Scopus Clarivate Crossref