Speech is the essential way to interact between humans or between human and machine. However, it is always contaminated with different types of environment noise. Therefore, speech enhancement algorithms (SEA) have appeared as a significant approach in speech processing filed to suppress background noise and return back the original speech signal. In this paper, a new efficient two-stage SEA with low distortion is proposed based on minimum mean square error sense. The estimation of clean signal is performed by taking the advantages of Laplacian speech and noise modeling based on orthogonal transform (Discrete Krawtchouk-Tchebichef transform) coefficients distribution. The Discrete Krawtchouk-Tchebichef transform (DKTT) has a high energy compaction and provides a high matching between Laplacian density and its coefficients distribution that affects positively on reducing residual noise without sacrificing speech components. Moreover, a cascade combination of hybrid speech estimator is proposed by using two stages filters (non-linear and linear) based on DKTT domain to lessen the residual noise effectively without distorting the speech signal. The linear estimator is considered as a post processing filter that reinforces the suppression of noise by regenerate speech components. To this end, the output results have been compared with existing work in terms of different quality and intelligibility measures. The comparative evaluation confirms the superior achievements of the proposed SEA in various noisy environments. The improvement ratio of the presented algorithm in terms of PESQ measure are 5.8% and 1.8% for white and babble noise environments, respectively. In addition, the improvement ratio of the presented algorithm in terms of OVL measure are 15.7% and 9.8% for white and babble noise environments, respectively.
The earth's surface comprises different kinds of land cover, water resources, and soil, which create environmental factors for varied animals, plants, and humans. Knowing the significant effects of land cover is crucial for long-term development, climate change modeling, and preserving ecosystems. In this research, the Google Earth Engine platform and freely available Landsat imagery were used to investigate the impact of the expansion and degradation in urbanized areas, watersheds, and vegetative cover on the land surface temperature in Baghdad from 2004 to 2021. Land cover indices such as the Normalized Difference Vegetation Index, Normalized Difference Water Index, and Normalized Difference Built-up Index (NDVI, NDWI, an
... Show MoreThis study compared in vitro the microleakage of a new low shrink silorane-based posterior composite (Filtek™ P90) and two methacrylate-based composites: a packable posterior composite (Filtek™ P60) and a nanofill composite (Filtek™ Supreme XT) through dye penetration test. Thirty sound human upper premolars were used in this study. Standardized class V cavities were prepared at the buccal surface of each tooth. The teeth were then divided into three groups of ten teeth each: (Group 1: restored with Filtek™ P90, Group 2: restored with Filtek™ P60, and Group 3: restored with Filtek™ Supreme XT). Each composite system was used according to the manufacturer's instructions with their corresponding adhesive systems. The teeth were th
... Show MoreThis research studies the effect of adding micro, nano and hybrid by ratio (1:1) of (Al2O3,TiO2) to epoxy resin on thermal conductivity before and after immersion in HCl acid for (14 day) with normality (0.3 N) at weight fraction (0.02, 0.04, 0.06, 0.08) and thickness (6mm). The results of thermal conductivity reveled that epoxy reinforced by (Al2O3) and mixture (TiO2+Al2O3) increases with increasing the weight fraction, but the thermal conductivity (k) a values for micro and Nano (TiO2) decrease with increasing the weight fraction of reinforced, while the immersion in acidic solution (HCl) that the (k) values after immersion more than the value in before immersion.
In this research prepared two composite materials , the first prepared from unsaturated polyester resin (UP) , which is a matrix , and aluminum oxide (Al2O3) , and the second prepared from unsaturated polyester resin and aluminum oxide and copper oxide (CuO) , the two composites materials (Alone and Hybrid) of percentage weight (5,10,15)% . All samples were prepared by hand layup process, and study the electrical and thermal conductivity. The results showed decrease electrical conductivity from (10 - 2.39) ×10-15 for (Up+ Al2O3) and from (10 - 2.06)×10-15 for (Up+ Al2O3+ CuO) .But increase thermal conductivity from( 0.17 - 0.505) for (Up+ Al2O3) and from (0.17 - 0.489) for (Up+ Al2O3+ CuO).
This Research deals with estimation the reliability function for two-parameters Exponential distribution, using different estimation methods ; Maximum likelihood, Median-First Order Statistics, Ridge Regression, Modified Thompson-Type Shrinkage and Single Stage Shrinkage methods. Comparisons among the estimators were made using Monte Carlo Simulation based on statistical indicter mean squared error (MSE) conclude that the shrinkage method perform better than the other methods
As an important resource, entanglement light source has been used in developing quantum information technologies, such as quantum key distribution(QKD). There are few experiments implementing entanglement-based deterministic QKD protocols since the security of existing protocols may be compromised in lossy channels. In this work, we report on a loss-tolerant deterministic QKD experiment which follows a modified “Ping-Pong”(PP) protocol. The experiment results demonstrate for the first time that a secure deterministic QKD session can be fulfilled in a channel with an optical loss of 9 dB, based on a telecom-band entangled photon source. This exhibits a conceivable prospect of ultilizing entanglement light source in real-life fiber-based
... Show MoreIn this article, Convolution Neural Network (CNN) is used to detect damage and no damage images form satellite imagery using different classifiers. These classifiers are well-known models that are used with CNN to detect and classify images using a specific dataset. The dataset used belongs to the Huston hurricane that caused several damages in the nearby areas. In addition, a transfer learning property is used to store the knowledge (weights) and reuse it in the next task. Moreover, each applied classifier is used to detect the images from the dataset after it is split into training, testing and validation. Keras library is used to apply the CNN algorithm with each selected classifier to detect the images. Furthermore, the performa
... Show MoreThis work investigates the impacts of eccentric-inclined load on ring footing performance resting on treated and untreated weak sandy soil, and due to the reduction in the footing carrying capacity due to the combinations of eccentrically-inclined load, the geogrid was used as reinforcement material. Ring radius ratio and reinforcement depth ratio parameters were investigated. Test outcomes showed that the carrying capacity of the footing decreases with the increment in the eccentric-inclined load and footing radius ratio. Furthermore, footing tilt and horizontal displacement increase with increasing the eccentricity and inclination angle, respectively. At the same time, the increment in the horizontal displacement due t
... Show MoreThis study seeks to highlights on the behavioral approach in organization theory as modern and effective entrance in constructing this theory and reflection extent on the behavior of both the product and the information user (accountant and financial information).
The study also focus on behavioral approach role in consolidating accounting concepts through making harmony between them so that the accountant can influence the user behavior with the concepts and principles of accounting in an effort to provide quality characteristic of accounting information produced by him in consistent with his behavior and information user and its impact on the decision making process by the latter.
... Show More