In this paper, new approach based on coupled Laplace transformation with decomposition method is proposed to solve type of partial differential equation. Then it’s used to find the accurate solution for heat equation with initial conditions. Four examples introduced to illustrate the accuracy, efficiency of suggested method. The practical results show the importance of suggested method for solve differential equations with high accuracy and easy implemented.
Two dwarf snakes were discovered, Eirenis thospitis Schmidtler & Lanza from Sereen mountain, north east of Arbil and E. rothii Jan from Saffin mountain North of Arbil city North of Iraqi Kurdistan. Supported by description and important notes on variation. In addition summarized list for 9 species of the genus Eirenis Jan in Iraq is also presented.
The gas material balance equation (MBE) has been widely used as a practical as well as a simple tool to estimate gas initially in place (GIIP), and the ultimate recovery (UR) factor of a gas reservoir. The classical form of the gas material balance equation is developed by considering the reservoir as a simple tank model, in which the relationship between the pressure/gas compressibility factor (p/z) and cumulative gas production (Gp) is generally appeared to be linear. This linear plot is usually extrapolated to estimate GIIP at zero pressure, and UR factor for a given abandonment pressure. While this assumption is reasonable to some extent for conventional reservoirs, this may incur
The time fractional order differential equations are fundamental tools that are used for modeling neuronal dynamics. These equations are obtained by substituting the time derivative of order where , in the standard equation with the Caputo fractional formula. In this paper, two implicit difference schemes: the linearly Euler implicit and the Crank-Nicolson (CN) finite difference schemes, are employed in solving a one-dimensional time-fractional semilinear equation with Dirichlet boundary conditions. Moreover, the consistency, stability and convergence of the proposed schemes are investigated. We prove that the IEM is unconditionally stable, while CNM is conditionally stable. Furthermore, a comparative study between these two s
... Show MoreThe aim of this work is to study a modified version of the four-dimensional Lotka-Volterra model. In this model, all of the four species grow logistically. This model has at most sixteen possible equilibrium points. Five of them always exist without any restriction on the parameters of the model, while the existence of the other points is subject to the fulfillment of some necessary and sufficient conditions. Eight of the points of equilibrium are unstable and the rest are locally asymptotically stable under certain conditions, In addition, a basin of attraction found for each point that can be asymptotically locally stable. Conditions are provided to ensure that all solutions are bounded. Finally, numerical simulations are given to veri
... Show MoreIn this paper, the dynamical behavior of a three-dimensional fractional-order prey-predator model is investigated with Holling type III functional response and constant rate harvesting. It is assumed that the middle predator species consumes only the prey species, and the top predator species consumes only the middle predator species. We also prove the boundedness, the non-negativity, the uniqueness, and the existence of the solutions of the proposed model. Then, all possible equilibria are determined, and the dynamical behaviors of the proposed model around the equilibrium points are investigated. Finally, numerical simulations results are presented to confirm the theoretical results and to give a better understanding of the dynami
... Show MoreIn this paper, the process for finding an approximate solution of nonlinear three-dimensional (3D) Volterra type integral operator equation (N3D-VIOE) in R3 is introduced. The modelling of the majorant function (MF) with the modified Newton method (MNM) is employed to convert N3D-VIOE to the linear 3D Volterra type integral operator equation (L3D-VIOE). The method of trapezoidal rule (TR) and collocation points are utilized to determine the approximate solution of L3D-VIOE by dealing with the linear form of the algebraic system. The existence of the approximate solution and its uniqueness are proved, and illustrative examples are provided to show the accuracy and efficiency of the model.
Mathematical Subject Classificat
... Show MoreThe aim of this paper is to construct cyclic subgroups of the projective general linear group over from the companion matrix, and then form caps of various degrees in . Geometric properties of these caps as secant distributions and index distributions are given and determined if they are complete. Also, partitioned of into disjoint lines is discussed.
The research dealt with the topic ' the aesthetics of design shape of interior spaces for the syndicate of physicians' as it reflects visions evolving to the level of tasting and positive interpretation for the space of work to be on a high design level.The research consisting of four chapters as follow; The first chapter examined the problem of the research contracted in the following question: Have the design shapes any role in achieving and showing the aesthetic side for the syndicate of physicians? so the goal of the research was showing the aesthetics of design shape of interior spaces for the syndicate of physicians, The chapter also included the objective spatial and temporal limits of research .Finally the terms were specified. T
... Show MoreThe nuclear structure for the positive ( ) States and negative ( ) states of 36,40Ar nuclei have been studied via electromagnetic transitions within the framework of shell model. The shell model analysis has been performed for the electromagnetic properties, in particular, the excitation energies, occupancies numbers, the transition strengths B(CL) and the elastic and inelastic electron scattering longitudinal form factors. Different model spaces with different appropriate interactions have been considered for all selected states. The deduced results for the (CL) longitudinal form factors and other properties have been discussed and compared with the available experimental data. The inclusion of the effective
... Show More