In this paper, new approach based on coupled Laplace transformation with decomposition method is proposed to solve type of partial differential equation. Then it’s used to find the accurate solution for heat equation with initial conditions. Four examples introduced to illustrate the accuracy, efficiency of suggested method. The practical results show the importance of suggested method for solve differential equations with high accuracy and easy implemented.
A new Turbidimetric method characterized by simplicity, accuracy and speed for determination of iron(III) in drug samples by continuous flow injection analysis. The method was based on the formation of complex for iron(III) with 8-hydroxyquinoline in presence of ammonium acetate as a medium for the formation of deep green precipitate and this precipitate was determined using homemade Linear Array Ayah-5SX1-T-1D continuous flow injection analyser. The optimum parameters were 2.6 mL.min-1 flow rate using H2O as a carrier, 1.9 mL.min-1 (14 mmol.L-1) ammonium acetate, 2.4 mL.min-1 (14 mmol.L-1) 8-hydroxyquinoline, 60 L sample volume and open valve for the purge of the sample segment. Data treatment shows that linear range 0.1-8.0 mmol.L-1
... Show MoreIn this paper, we consider a two-phase Stefan problem in one-dimensional space for parabolic heat equation with non-homogenous Dirichlet boundary condition. This problem contains a free boundary depending on time. Therefore, the shape of the problem is changing with time. To overcome this issue, we use a simple transformation to convert the free-boundary problem to a fixed-boundary problem. However, this transformation yields a complex and nonlinear parabolic equation. The resulting equation is solved by the finite difference method with Crank-Nicolson scheme which is unconditionally stable and second-order of accuracy in space and time. The numerical results show an excellent accuracy and stable solutions for tw
... Show MoreSeveral stress-strain models were used to predict the strengths of steel fiber reinforced concrete, which are distinctive of the material. However, insufficient research has been done on the influence of hybrid fiber combinations (comprising two or more distinct fibers) on the characteristics of concrete. For this reason, the researchers conducted an experimental program to determine the stress-strain relationship of 30 concrete samples reinforced with two distinct fibers (a hybrid of polyvinyl alcohol and steel fibers), with compressive strengths ranging from 40 to 120 MPa. A total of 80% of the experimental results were used to develop a new empirical stress-strain model, which was accomplished through the application of the parti
... Show MoreWe define L-contraction mapping in the setting of D-metric spaces analogous to L-contraction mappings [1] in complete metric spaces. Also, give a definition for general D- matric spaces.And then prove the existence of fixed point for more general class of mappings in generalized D-metric spaces.
In this article, the partially ordered relation is constructed in geodesic spaces by betweeness property, A monotone sequence is generated in the domain of monotone inward mapping, a monotone inward contraction mapping is a monotone Caristi inward mapping is proved, the general fixed points for such mapping is discussed and A mutlivalued version of these results is also introduced.
In this paper we define and study new concepts of fibrewise topological spaces over B namely, fibrewise near topological spaces over B. Also, we introduce the concepts of fibrewise near closed and near open topological spaces over B; Furthermore we state and prove several Propositions concerning with these concepts.
We define and study new ideas of fibrewise topological space on D namely fibrewise multi-topological space on D. We also submit the relevance of fibrewise closed and open topological space on D. Also fibrewise multi-locally sliceable and fibrewise multi-locally section able multi-topological space on D. Furthermore, we propose and prove a number of statements about these ideas.
The concept of fuzzy orbit open sets under the mapping
The aim of this research is to use the class of soft simply open set to define new types of separation axioms in soft topological spaces. We also introduce and study the concept of soft simply compactness.