Preferred Language
Articles
/
1BZ7UIkBVTCNdQwCqIjc
New Approach for Solving Two Dimensional Spaces PDE
...Show More Authors
Abstract<p>In this paper, new approach based on coupled Laplace transformation with decomposition method is proposed to solve type of partial differential equation. Then it’s used to find the accurate solution for heat equation with initial conditions. Four examples introduced to illustrate the accuracy, efficiency of suggested method. The practical results show the importance of suggested method for solve differential equations with high accuracy and easy implemented.</p>
Scopus Crossref
View Publication
Publication Date
Tue May 05 2015
Journal Name
International Journal Of Research In Pharmacy And Chemistry
NEW APPROACH FOR DETERMINATION OF MEBEVERINE BY QUENCHED FLUORESCENCE OF ANALYTICALLY INTERESTED SPECIES USING CONTINUOUS FLOW INJECTION LASER DIODE FLUORIMETER ANALYSER
...Show More Authors

The proposed method is sensitive, simple , fast for the determination of mebeverine hydrochloride in pure form or in pharmaceutical dosage . Using Homemade instrument fluorimeter continuous flow injection analyser with solid state laser (405 nm) as a source. Where it is based upon the fluorescence of fluorescein sodium salt and quenching effect of fluorescence by mebeverine in aqueous medium. The calibration graph was linear in the concentration range 0.05 to10 mMol.L-1 (r= 0.9629) with relative standard deviation (RSD%) for 1 mMol.L-1mebeverine solution was lower than 3% (n=6). Three pharmaceutical drugs were used as an application for the determination of mebeverine. A comparison was made between the newly developed method of analysis wit

... Show More
View Publication
Publication Date
Sun Dec 01 2024
Journal Name
Chilean Journal Of Statistics
A method of multi-dimensional variable selection for additive partial linear models.
...Show More Authors

In high-dimensional semiparametric regression, balancing accuracy and interpretability often requires combining dimension reduction with variable selection. This study intro- duces two novel methods for dimension reduction in additive partial linear models: (i) minimum average variance estimation (MAVE) combined with the adaptive least abso- lute shrinkage and selection operator (MAVE-ALASSO) and (ii) MAVE with smoothly clipped absolute deviation (MAVE-SCAD). These methods leverage the flexibility of MAVE for sufficient dimension reduction while incorporating adaptive penalties to en- sure sparse and interpretable models. The performance of both methods is evaluated through simulations using the mean squared error and variable selection cri

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Tue Jun 01 2021
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
A New Approach of Morgan-Voyce Polynomial to Solve Three Point Boundary Value Problems
...Show More Authors

In this paper, a new procedure is introduced to estimate the solution for the three-point boundary value problem which is instituted on the use of Morgan-Voyce polynomial. In the beginning, Morgan-Voyce polynomial along with their important properties is introduced. Next, this polynomial with aid of the collocation method utilized to modify the differential equation with boundary conditions to the algebraic system. Finally, the examples approve the validity and accuracy of the proposed method.

View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Wed Sep 01 2021
Journal Name
Review Of International Geographical Education
A New Approach in Determining the Criteria of Equations for Morphometric Characteristics of River Basins - Applied Morphometric Study of The Mamaran Basin
...Show More Authors

This study aimed at some of the criteria used to determine the form of the river basins, and exposed the need to modify some of its limitations. In which, the generalization of the elongation and roundness ratio coefficient criterion was modified, which was set in a range between (0-1). This range goes beyond determining the form of the basin, which gives it an elongated or rounded feature, and the ratio has been modified by making it more detailed and accurate in giving the basin a specific form, not only a general characteristic. So, we reached a standard for each of the basins' forms regarding the results of the elongation and circularity ratios. Thus, circular is (1-0.8), and square is (between 0.8-0.6), the blade or oval form is (0.6-0

... Show More
Publication Date
Thu Apr 26 2018
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Normalization Bernstein Basis For Solving Fractional Fredholm-Integro Differential Equation
...Show More Authors

In this work, we employ a new normalization Bernstein basis for solving linear Freadholm of fractional integro-differential equations  nonhomogeneous  of the second type (LFFIDEs). We adopt Petrov-Galerkian method (PGM) to approximate solution of the (LFFIDEs) via normalization Bernstein basis that yields linear system. Some examples are given and their results are shown in tables and figures, the Petrov-Galerkian method (PGM) is very effective and convenient and overcome the difficulty of traditional methods. We solve this problem (LFFIDEs) by the assistance of Matlab10.   

View Publication Preview PDF
Crossref
Publication Date
Wed Apr 29 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Alternating Directions Implicit Method for Solving Homogeneous Heat Diffusion Equation
...Show More Authors

     An Alternating Directions Implicit method is presented to solve the homogeneous heat diffusion equation when the governing equation is a bi-harmonic equation (X) based on Alternative Direction Implicit (ADI). Numerical results are compared with other results obtained by other numerical (explicit and implicit) methods. We apply these methods it two examples (X): the first one, we apply explicit when the temperature .

View Publication Preview PDF
Crossref
Publication Date
Tue Jan 02 2018
Journal Name
Arab Journal Of Basic And Applied Sciences
Daftardar-Jafari method for solving nonlinear thin film flow problem
...Show More Authors

View Publication
Crossref (15)
Crossref
Publication Date
Thu May 18 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Finite Difference Method for Solving Fractional Hyperbolic Partial Differential Equations
...Show More Authors

    In this paper, the finite difference method is used to solve fractional hyperbolic partial differential equations, by modifying the associated explicit and implicit difference methods used to solve fractional  partial differential equation. A comparison with the exact solution is presented and the results are given in tabulated form in order to give a good comparison with the exact solution

View Publication Preview PDF
Publication Date
Sun Jan 01 2023
Journal Name
Communications In Mathematical Biology And Neuroscience
A reliable numerical simulation technique for solving COVID-19 model
...Show More Authors

View Publication
Scopus (2)
Scopus Clarivate Crossref
Publication Date
Thu Jun 01 2023
Journal Name
Baghdad Science Journal
Effective Computational Methods for Solving the Jeffery-Hamel Flow Problem
...Show More Authors

In this paper, the effective computational method (ECM) based on the standard monomial polynomial has been implemented to solve the nonlinear Jeffery-Hamel flow problem. Moreover, novel effective computational methods have been developed and suggested in this study by suitable base functions, namely Chebyshev, Bernstein, Legendre, and Hermite polynomials. The utilization of the base functions converts the nonlinear problem to a nonlinear algebraic system of equations, which is then resolved using the Mathematica®12 program. The development of effective computational methods (D-ECM) has been applied to solve the nonlinear Jeffery-Hamel flow problem, then a comparison between the methods has been shown. Furthermore, the maximum

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (1)
Scopus Crossref